
Chapter 22W

Splines and Subdivision
Curves

22.1W Introduction

Everywhere in computer graphics are problems that need to be solved with smooth
curves. Examples are

• You want to filter an image with a circularly symmetric filter that approx-
imates a Gaussian, but has finite extent, so you want to create a smooth
approximation to the truncated Gaussian.

• You want to let a user specify “key frames” in an animation and then inter-
polate between these by smoothly changing whatever parameters the user
has set; the way the parameters are varied is defined by a smooth curve.

• You want a user to draw smooth curves to outline a cartoon character, but
drawing with either a mouse or pen is difficult for many people; you’d like
to take a rough drawing and clean it up into a smooth one, which the user
can then adjust easily without re-introducing roughness.

• You’re creating a drawing program in which a user will be drawing arrows
to label items; the tails of the arrows need to be curved, but neither arcs
of circles or arcs of ellipses seem rich enough to you; you want a more
general kind of smooth shape to work with.

In all cases splines are a good solution to your problems. Splines are paramet-
ric curves whose shape is governed by a sequence of “control points.” There are
many kinds of splines. For some, called interpolating splines (see Figure 22W.1),
the curve passes directly through the control points; for others (approximating
splines) the curve is influenced by the control points, but may not pass through
them. We’ve already encountered something very like splines: the subdivision
curves from Chapter 4. The construction given there defines just one of many
kinds of subdivision curve. Notice that the limit curve ended up passing near the
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Figure 22W.1: Six control points P0, . . . , P5 and two splines; the first is an interpolating
spline, which passes through the points; the other is an approximating spline, whose shape
is guided by the control points, but which does not necessarily pass through them.

points of the initial polyline (which we could call “control points”), so this kind
of subdivision curve would be called “approximating” rather than “interpolating.”

The relationship between subdivision curves (which are defined geometri-
cally) and splines (which are defined parametrically) is very strong; we’ll discuss
it in Section 22.16W.

22.1.1W Historical origins
The creation of smooth curves (and surfaces, but this chapter concentrates on
curves, and we’ll only discuss those henceforth) was historically not only the
domain of mathematicians, but of artisans as well; shipwrights drew designs
for boats by drawing their cross-sections in several planes, for instance. These
cross-sections were then measured and their shapes tabulated by recording several
points on each curve. When it came time to build the ship, these measured points
were laid out on a flat surface (the floor of a large room, for instance, with the
points being marked by nails driven partway into the floor) at full scale, but then
there was the challenge of joining them up smoothly. A simple connect-the-dots
approach would have produced sharp corners in the ship, which was undesirable.
Instead, strips of wood or metal were bent so as to pass through the chosen points,
usually by bending the strip around the nails. The resulting curve was then traced
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onto the floor, resulting in a model shape that determined how the ship was to be
built. The thin pieces of wood or metal were known as splines, and the term has
survived to this day to mean “a smooth curve whose shape is determined by sev-
eral key points.” Splines on a smaller scale were widely used in drafting before the
advent of computer aided design tools. Instead of pounding nails into a desktop, a
draftsman would place lead weights (called ducks) with small hooks attached; the
hooks would take the place of the nails in governing the shape of the spline.

22.1.2W Two examples: Hermite and Bézier curves
We begin by describing two types of curves that get a lot of use in spline-related
applications. These provide a concrete instance of ideas developed in this chapter,
and they’ll serve as examples from which we’ll generalize. They’re so common
that having their description right away will help you start solving spline-based
problems directly. Hermite curves are not, strictly speaking, a kind of spline: an
Hermite curve is determined by two control points and a vector at each point; by
contrast, Bézier curves are determined by four control points.

Calling a curve a “Bézier” or “Hermite” curve is slightly misleading: the
Bézier and Hermite formulations provide two different ways to specify a curve.
If you’re given a parametric cubic curve, there’s no way to tell whether it was
specified by the Bézier approach, the Hermite, or some other approach entirely.
We’ll see how to convert from a Bézier specification of a curve (a list of four
points) to an Hermite specification (two points and two vectors) of exactly the
same curve, and vice versa.

22.1.2W.1 Hermite curves
An Hermite (pronounced “air-meet”) curve goes from a point P to a point Q, with
initial tangent vector v and final tangent vector w (Figure 22W.2). The points P
and Q and the vectors v and w completely determine the curve.

The formula for the Hermite curve is:

γ(t) = (2t3 − 3t2 + 1)P + (−2t3 + 3t2)Q + (t3 − 2t2 + t)v + (t3 − t2)w
(22.1W)

= (2t3 − 3t2 + 1)P + (−2t3 + 3t2)Q + t(1− t)2v + t2(1− t)w. (22.2W)

We’ll discuss shortly how these polynomials were found. For now, just convince
yourself that in fact the curve satisfies γ(0) = P, γ(1) = Q, γ′(0) = v and
γ′(1) = w.

The four cubic polynomials in this expression tell us how the inputs are com-
bined to make the curve γ. In particular, the factors of t and (1− t) in the polyno-
mials for v and w tell us that these inputs have no influence on the locations of the
endpoints γ(0) and γ(1), while the factor of t2 in the polynomial for Q shows that
Q has no influence either on the location of γ(0) or on the tangent vector γ′(0)
(see Exercise 22.1). The other polynomials can be read similarly. The graphs of
these four polynomials, shown in Figure 22W.3, reveal this same information.

A curve written in terms of polynomials can be written in a matrix form. Let-
ting T(t) denote a vector containing powers of t, i.e., T(t) =

[
1 t t2 t3

]T
, we
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Figure 22W.2: An Hermite curve γ goes from γ(0) = P to γ(1) = Q, with initial tangent
vector γ′(0) = v and final tangent vector γ′(1) = w.

can write

γ(t) = [P; Q; v; w] ·




1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1


 · T(t) (22.3W)

where the first factor is a matrix whose columns are the coordinates of P, Q, v,
and w, respectively (we’ll use the semicolon notation for this in the future as well),
and the middle matrix contains the coefficients of the polynomials for the Hermite
spline.

Inline Exercise 22W.1: Multiply out, by hand, the second and third factors in
the expression for γ(t); you should get a column vector of four polynomials.
Suppose that we had defined T to be the vector

[
t3 t2 t 1

]T
instead; how

would the second matrix in the expression for γ(t) have to change?

Inline Exercise 22W.2: Suppose that ζ(t) = (1− t)P+ tQ. Write ζ in a matrix
form like that of Equation 22.3W. Your vector T(t) will be just

[
1 t

]T
.
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Figure 22W.3: The four Hermite polynomials, plotted on a single set of axes. At t = 0, the
polynomial for P is 1, and all others are zero; the only one with nonzero derivative is the
polynomial for v, thus v controls γ′(0). Similar observations about the other curves tell us
the relations of these polynomials to inputs to the Hermite curve.

22.1.2W.2 Programming
An Hermite curve is a function of five things: two points, two vectors, and the
parameter t. In C#, we can implement an Hermite curve as a function of five
variables, as shown in Listing 22W.1.

1
2 public Point hermite(double t, Point P, Point Q, Vector v,

Vector w)
3 {
4 double t2 = t*t;
5 double t3 = t*t2;
6
7 double p1 = 2. * t3 - 3. * t2 + 1.0;
8 double p2 = -2. * t3 +3. * t2; // just 1 - p1.
9 double p3 = t3 - 2. * t2 + t;

10 double p4 = t3 - t2;
11
12 return AffineCombination(P, p1, Q, p2) + (p3 * v + p4 * w)

;
13 }
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Listing 22W.1: Nonoptimized C# code for an Hermite spline; the code assumes that the
Point and Vector classes are already defined, as well as operators for combining them.

Such an implementation is not very efficient, however, if we intend to repeat-
edly call it with the same set of points and vectors, and vary only t; used that way,
it makes more sense to build up a matrix, as in Equation 22.3W, and re-use it. That
idea, encapsulated in a class, is partly shown in Listing 22W.2.

1
2 public class HermiteCurve
3 {
4 private Mat24 SMat; // Mat24 is a 2x4 matrix class
5
6 public HermiteCurve(Point2 Start, Point2 Finish, Vector2
7 StartTangent, Vector2 FinishTangent) {
8
9 Mat24 Geom = new Mat44(Start.coords(), Finish.coords()

,
10 StartTangent.coords(),
11 FinishTangent.coords());

12 Mat44 HMat =

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

;
13 Smat = Geom * HMat;
14 }
15
16 public Point2 SplinePoint(double t){
17 Vec4 Tvec = new Vec4(1, t, t*t, t*t*t);
18 return Smat * Tvec;
19 }
20 }

Listing 22W.2: An Hermite curve class whose constructor builds a matrix from the control
data; calculating points on the spline is done with a matrix-multiply. Shown is a 2D spline,
but the generalization to 3D would just use a 3 × 4 matrix in place of the 2 × 4 one. The
coords method of a Point returns its coordinates in the standard coordinate system; the
same goes for Vectors. We’re also assuming the existence of constructors for matrices in
terms of their columns.

Inline Exercise 22W.3: How would you augment this class to allow one to
compute several points on the spline at once, i.e., how would you write a
method public Point2[] SplinePoint (double[] t) that took in an array
of n doubles and produced an array of n Points on the spline curve? Hint:
make a 4× n array containing powers of the t-values.

22.1.2W.3 What’s an Hermite curve good for?
Hermite curves give a user easy control over the location of the curve endpoints
and the tangents there. That’s often useful when you have to edit a curve, but it’s
not always the best way to create one. One interface for creating Hermite curves
has the user click on the first point, drag and release to indicate the first tangent,
click on the last point, and finally drag and release to indicate the second tangent,
at which point the curve is drawn.
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Inline Exercise 22W.4: A simple way to draw a spline curve is to draw
instead a very good polyline approximation of the curve. You also want to
be sure that both endpoints of the curve are included in the polyline, rather
than using nearby points, so that if you join two curves at a point, but
not smoothly, you get a sharp corner rather than a “shortcut” across it. It’s
tempting to just use lots of equispaced t-values, and hope that the results
will look good. But how do you determine the spacing? In drawing a poly-
line approximation, it’s nice to avoid long straight edges, and to avoid too-
rapid changes of direction at the vertices. In this exercise, we’ll do some
crude estimates to ensure good curve drawings. (a) For the Hermite curve
γ(t) = (2t3−3t2 +1)P+(−2t3 +3t2)Q+ t(1− t)2v+ t2(1− t)w (0 ≤ t ≤ 1),
write down γ′(t) as a polynomial linear combination of v, w, and u = Q− P,
i.e., write γ′(t) = q1(t)v + q2(t)w + q3(t)(Q − P) for three polynomials
q1, q2, and q3. (b) Find the maximum value mi of each |qi| (i = 1, 2, 3) on
the interval [0, 1]. (c) Using the fact that ‖a + b‖ ≤ ‖a‖ + ‖b‖, we know that
‖γ′(t)‖ ≤ |q1(t)|‖v‖ + |q2(t)|‖w‖ + |q3(t)|‖u‖; the largest value of ‖γ′(t)‖,
over all t in [0, 1], is therefore bounded by K = m1‖v‖ + m2‖w‖ + m3‖u‖.
(d) If we want each segment to have a length no greater than some constant
L, we can simply choose a t-spacing that’s no greater than L/K. How would
you determine such a spacing in a program? Be careful to consider special
cases, such as K = 0, and the desire to have both t = 0 and t = 1 included
in the list of t-values. (e) Perform a similar analysis that will ensure that the
second derivative is no greater than some other constant M. (f) Write a small
program that lets you experiment with the resulting polygonal approximations
by varying K and M (and the endpoints and tangents of your Hermite curve,

of course). The estimates on the derivative and second derivative given
here is very crude; the t-value at which q1 takes its maximum is nowhere near
the one where q3 is maximal, etc. Finer estimates are not hard to produce, and
adaptive algorithms, which choose a t-value, estimate derivatives there, and
use those to choose a subsequent t-value, etc., are also relatively simple.

Programming Exercise 22W.1: Implement the interface described above
in the 2D testbed. When the user clicks-and-drags from P to S, you should use
P as the starting point for the Hermite curve, and S − P as the starting tangent
v; as the user then moves the cursor in preparation for clicking-and-dragging the
second point and tangent, you can constantly redisplay an Hermite curve, using the
current cursor position for the final point, and the zero vector for the final tangent.
When the user clicks the final point Q and begins to drag, use M − Q (where M
is the mouse position) as the final tangent w and display the curve; when the user
releases the mouse button, the curve should remain visible. When the user initiates
another click-and-drag, you should clear the canvas and start again.

One can even draw a connected sequence of Hermite curves, using the last
point (Q) of one segment as the initial point (P) of the next segment. To make the
curves join up smoothly, one can also use the final tangent (w) of one segment
as the initial tangent (v) of the next segment. As we’ll soon see, this approach to
smoothness is somewhat limiting, but it lets you experiment with how Hermite
curves can be controlled.
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Now we return to the question of where the polynomials in the Hermite for-
mulation came from. First, with a cubic polynomial there are four unknown coef-
ficients; at the same time, we have, for each coordinate, four conditions (it should
start here, end here, and have these derivatives at the start and the end). Since the
number of conditions is the same as the number of unknowns, we expect to be able
to find a unique solution to our problem. In such cases, it’s best to assume that a
solution exists, and see what the conditions tell us. Typically, they’ll give formulas
for the unknowns, and we can then verify that these have the desired properties.

We’re looking for an expression of the form

γ(t) = p1(t)P + p2(t)Q + p3(t)v + p4(t)w (22.4W)

where each pi is a cubic polynomial, and where γ(0) = P, γ(1) = Q, γ′(0) = v
and γ′(1) = w. The first of these conditions tells us that

P = p1(0)P + p2(0)Q + p3(0)v + p4(0)w. (22.5W)

Since we want this to be true for any values of P, Q, v and w, we must have

p1(0) = 1 (22.6W)
p2(0) = 0 (22.7W)
p3(0) = 0 (22.8W)
p4(0) = 0. (22.9W)

Similarly, the second, third and fourth conditions tell us other things about the pi

and their derivatives. (You should write these out). If we write p1(t) = at3 + bt2 +
ct + d, then the four resulting conditions on p1 are

p1(0) = d = 1
p1(1) = a + b + c + d = 0
p′1(0) = c = 0
p′1(1) = 3a + 2b + c = 0.

The unique solution to this system of four equations in four unknowns is a =
2, b = −3, c = 0, d = 1, so p1(t) = 2t3−3t2 +1. Similar computations determine
the other three polynomials.

Exercise 22W.7 shows another approach to finding these polynomials.

22.2W Bézier curves

A Bézier curve is, like an Hermite curve, specified by four parameters; in the case
of the Bézier curve, however, all four are points, which we’ll call P1, P2, P3 and
P4. The curve starts at P1, in the direction P2−P1, and ends at P4, travelling in the
direction P4 − P3. The formula for a Bézier curve, in both polynomial and matrix
form, is
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Figure 22W.4: Several Bézier curves, shown with their control hulls. Can you look at the
Bernstein polynomials (plotted at the right) and tell why Bézier curves interpolate (i.e.,
pass through) their first and last control points?

γ(t) = [P1; P2; P3; P4]




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1







1
t
t2

t3


 (22.10W)

= (1− t)3P1 + 3t(1− t)2P2 + 3t2(1− t)P3 + t3P4. (22.11W)

The coefficients of P1, . . . , P4 are the degree three Bernstein polynomials.
They follow a very regular pattern, and will appear again later. These polynomials,
together with a selection of Bézier curves, are shown in Figure 22W.4.

Inline Exercise 22W.5: (a) Show that if the control points are at x = 0, 1
3 , 2

3 , 1
on the x-axis, then the Bézier curve is exactly γ(t) = (t, 0). (b) More generally,
if P1, . . . , P4 are equally spaced along a line, then the Bézier curve is exactly

γ(t) = (1− t)P1 + tP4. (c) Make a corresponding statement about Her-
mite curves: what property must the tangents have to make the Hermite curve
from P to Q be γ(t) = (1− t)P + tQ?
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Figure 22W.5: A parametric plot of a piecewise degree-one polynomial curve; note that
there are "breakpoints" at which the curve’s direction changes abruptly. These correspond
to two adjacent segments being defined by different degree-one polynomials.

Inline Exercise 22W.6: Consider a “quadratic Bézier curve” defined by three
points instead of four, by the formula γ(t) = (1− t)2P1 + 2t(1− t)P2 + t2P3.
Where does this curve start and end, and what are its initial and final tangents?

22.3W Why piecewise cubics?

Before we discuss splines further, we digress briefly to give two rationales for
why piecewise cubic curves are a natural choice. The first explanation is relatively
simple; the second is somewhat more complex, and we omit some mathematical
details. Neither is essential for understanding how to work with splines, but both
are relevant in generalizing splines.

22.3.1W Planarity
Assuming we want to use piecewise polynomial curves, we can consider various
degrees for the polynomials. With degree one polynomials, we get the kind of
connect-the-dots curves that we saw in Chapter 9, which are simple but not smooth
enough for most of our applications (see Figure 22W.5).

Moving to degree two polynomials, the resulting plots give us connected
curves, and with some care, we can arrange that adjacent curve pieces meet, and
that their tangent directions agree. Now the curves appear smooth as well as con-
tinuous (see Figure 22W.6).

It would seem that piecewise degree two curves are adequate: they bend nicely,
they have no sharp corners (if we choose our polynomials carefully), and it’s even
not very difficult to make them pass through a sequence of chosen points. Indeed,
for many simple tasks, they are completely adequate.



22.3W Why piecewise cubics? 89

Figure 22W.6: A parametric plot of a piecewise degree-two polynomial curve, where adja-
cent polynomial segments have been chosen carefully so that they meet and their tangent
directions agree at the meeting points. The result curve has no sharp corners.

But in three dimensions, something interesting happens: suppose that

q(t) = (x(t), y(t), z(t)) (22.12W)

is a quadratic polynomial curve, i.e., that x(t), y(t), and z(t) are all quadratics in the
variable t. We’ll see, in the next few paragraphs, that a parametric plot of the curve
q lies in a single plane. That means that it cannot possibly take the shape of a helix,
for instance: to model a spiral staircase, we’d have to glue together a collection
of curves, each of which was planar, with an abrupt shift of the containing-plane
at the join-points. This lack of torsion in the curves makes them inadequate for
many important modeling tasks. Cubics, by contrast, do have torsion, and hence
are widely used.

To see that every quadratic parametric curve in 3D is planar, we’ll write out
the polynomials explicitly. So

q(t) = (axt2 + bxt + cx, ayt2 + byt + cy, azt2 + bzt + cz). (22.13W)

Letting a = (ax, ay, az), similarly for b and c, we can rewrite this in the form

q(t) = t2a + tb + c. (22.14W)

We’ll now show that the parametric plot of the curve q lies in the plane perpen-
dicular to the vector n = a × b, passing through q(0) = c. That plane is defined
as the set of points X satisfying

(X − c) · n = 0. (22.15W)

We’re claiming that for every t, q(t) is on that plane, i.e., that

(q(t)− c) · n = 0. (22.16W)
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The proof is just a computation:

(q(t)− c) · n = ((t2a + tb + c)− c) · n (22.17W)

= (t2a + tb) · (a×b) (22.18W)

= t2a · (a×b) + tb · (a×b) (22.19W)

= t2(0) + t(0) (22.20W)
= 0. (22.21W)

Inline Exercise 22W.7: Generalize the argument above to show that any
degree n polynomial curve in (n + 1)-space lies entirely in an n-dimensional
subspace. You may need to use the n-fold cross product to do this.

22.3.2W Bending energy
If q(t) = (x(t), y(t), z(t)) is a parametric curve representing the shape of a bent
metal wire, then the squared magnitude of the second derivative, ‖q′′(t)‖2 is an
approximation of the energy required at the point q(t) to bend an initially straight
wire into that shape. (The approximation is most accurate for shapes that are
almost straight, i.e., one that represent small deformations of the straight wire).
The integral of this approximation over the entire wire gives an approximation of
the total energy

E =

∫ b

a
‖q′′(t)‖2dt, (22.22W)

where a and b are the starting and ending parameter values for the shape. Let’s
assume that a = 0 and b = 1 to simplify things.

Let’s now consider the problem shown in Figure 22W.7: we ask “among all

curves that go from P = (1, 1) to Q = (3, 1), with initial velocity v =

(
1
−1

)
and

final velocity w =

(
1
− 1

2

)
, which one has the least total bending energy?” Such a

curve should be the shape taken on by a piece of metal that’s held in such a way
as to satisfy the constraints.

Section 22.17.4W presents an argument that this energy-minimizing curve
must satisfy the differential equation

q′′′′(t) = 0 for 0 < t < 1, (22.23W)

which means that q(t) must be a cubic in t. This differential equation is indepen-
dent of P, Q, v and w, so the general solution to the problem is always a cubic.
Our earlier analysis shows that the particular optimal solution can be found using
the Hermite formulation.

22.3.3W Gluing together Bézier curves
Returning to the subject of Bézier curves, a single Bézier curve may be useful in
some places, but longer curves, with more bends, interpolating many points, are
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Figure 22W.7: We seek, among all parametric curves that start at P = (1, 1) (at t = 0) and
end at Q = (3, 1) (at t = 1), and whose initial velocity is v and whose final velocity is w,
one with the least total bending energy.

nice too. To build such a thing, we can join up multiple Bézier curves. Suppose
that we have control point sequences P1, . . . , P4 and Q1, . . . , Q4 for two Bézier
curves. How can we adjust the Ps and Qs to make the end of the P-curve match
the start of the Q-curve? Since the end of the P-curve is at P4, and the start of the
Q-curve is at Q1, if we require that P4 = Q1, then the curves will connect together
(Figure 22W.8).

The join between the curves is not generally smooth, however. If we call the
curves γP and γQ, we’ve arranged that

γP(1) = γQ(0), (22.24W)

but not that the tangents to the two curves match up. One way to do so is to insist
that the tangent vectors to the two paths are also identical, i.e., that

γ′P(1) = γ′Q(0). (22.25W)

Working through the algebra, this can be assured by making Q2 −Q1 = P4 − P3;
since Q1 = P4, this simplifies to Q2 = P4 + (P4 − P3).

Using γP and γQ we can create a new curve γ defined by

γ(t) =

{
γP(t) 0 ≤ t ≤ 1
γQ(t − 1) 1 ≤ t ≤ 2

(22.26W)

The new curve γ has [0, 2] as its domain; on [0, 1] it looks like γP, and on [1, 2]
it looks like γQ. Note, however, that this “looks like” means that for 1 ≤ t ≤ 2,
γ(t) = γQ(t − 1), so that when we evaluate γ(1. 5), we compute γQ(0. 5), which
is

p1(0. 5)Q1 + . . .+ p4(0. 5)Q4. (22.27W)
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Figure 22W.8: Two Bézier curves that join together: the end of the first is the start of the
second. Unfortunately, the join is not smooth.

so that each segment of the glued-together curve γ is evaluated by using the Bézier
evaluation scheme.

22.4W Parametric and Geometric Continuity

The glued-together Bézier curve of the previous section has what is called C1-
continuity, because the curve defined by

γ(t) =

{
γP(t) 0 ≤ t ≤ 1
γQ(t − 1) 1 ≤ t ≤ 2

(22.28W)

is both continuous and has a continuous first derivative (we say “γ is C1”). In
the earlier example, when we required only that Q1 = P4, the curve would be
said to have C0-continuity, because although it was continuous, its first derivative
might be discontinuous at t = 1. The idea can be generalized to require that the
second derivative be continuous as well (C2-continuity), and so on. This notion of
continuity – the matching of values, derivatives, second derivatives, and so on – is
called parametric continuity, because it depends not only on the geometry of the
curve, but on the parameterization.
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Inline Exercise 22W.8: Consider the curve defined by γ(t) = (1, 2t) for
0 ≤ t ≤ 1 and by γ(t) = (1, t + 2) for 1 ≤ t ≤ 2. (a) Draw the parametric
plot of this curve and observe that it looks “continuous and smooth” at the joint
point (where t = 1). (b) Draw the graph of this curve, i.e., plot γ(t) against t
on three-dimensional axes. (c) Is γ C1? (c) Now consider a different curve: let
γ(t) = (t2, 0) for −1 ≤ t ≤ 0 and γ(t) = (0, t2) for 0 ≤ t ≤ 1. Again draw a
parametric plot and a graph of γ, and tell whether γ is C1.

A different condition for “continuity” requires only that the tangent vectors
point in the same direction. Curves with that property at the join-points are said to
be G1-continuous (and we sometimes refer to geometric continuity versus para-
metric continuity). What happens if one of the tangent vectors is the zero vector?
Since it has no direction, the two directions cannot be equal. A cleaner way to
express the condition for G1 continuity is that the tangents must be positive mul-
tiples of one another. In summary, two Bézier curves γP and γQ join with C1 con-
tinuity if Q1 = P4 and Q2 = P4 + (P4 − P3), while they joint with G1 continuity
if Q1 = P4 and Q2 = P4 + α(P4 − P3) with α > 0.

Inline Exercise 22W.9: Consider the two curves in the previous inline exer-
cise. Which is G1? Conclude that a C1 curve is not necessarily G1, and vice
versa.

22.5W Catmull-Rom splines

We’ll now work through an example spline with C1 continuity, the Catmull-Rom
spline or CR spline. One intended application of the CR-spline is in animation: if
you are given the positions P0, P1, . . . , Pn of some object at time t = 0, 1, 2, . . . , n,
you can use a CR-spline to fill in positions at the non-integer times in a way that
looks reasonable. In particular, that means that if the positions P0, P1, . . . , Pn are
equally spaced points on a straight line, the resulting spline γ : [0, n]→ R2 should
be a uniform-speed straight line between the endpoints, i.e., should be

γ(t) =
n− t

n
P0 +

t
n

Pn. (22.29W)

Furthermore, to make the animation smooth, we want to have C1 continuity.
Rather than having the user specify the tangents at each control point, the tan-

gents are computed from nearby control points: the tangent at Pi (for i 6= 0, n) is
parallel to Pi+1 − Pi−1) (see Figure 22W.9). To make the remainder of the pre-
sentation simpler, we’ll add two “fictitious” control points, P−1 and Pn+1, defined
by

P−1 = P0 − (P1 − P0)

Pn+1 = Pn + (Pn − Pn−1)

Inline Exercise 22W.10: Suppose that P0, . . . , Pn are given by Pi = (i, i).
What do the preceding formulas give for P−1 and Pn+1?
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Figure 22W.9: A Catmull-Rom spline; the segment between P2 and P3 has a tangent (at P2)
that’s parallel to the line from P1 to P3; the tangent at P3 is parallel to the line from P2 to
P4.

Finally, we want our curve to be piecewise cubic on the interval from t = i to
t = i+1; on this interval, the starting and ending points of the cubic are determined
by Pi and Pi+1 and the starting and ending tangents are affected by Pi−1 and Pi+2,
respectively, so we hope to write our curve, γ, on the interval [i, i + 1] with an
expression of the form

γ(t) = p1(t − i)Pi−1 + p2(t − i)Pi + p3(t − i)Pi+1 + p4(t − i)Pi+2 for i ≤ t ≤ i + 1,
(22.30W)

where the polynomials pi (yet to be determined) are the same for every interval,
and only the control points change.

Thus the problem to be solved is “What polynomials (if any) will create a
spline that passes through the points with C1 continuity, that has tangents in the
right directions, and has the “fill in equispaced points on a line nicely” property?”

22.6W Catmull-Rom splines derived

In building Catmull-Rom splines, our goal is to take a sequence of control points
P0, P1, . . . , Pn and build a piecewise cubic curve that passes through each point.
One approach is to observe that the piece of curve between P2 and P3 is controlled
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by P1, P2, P3 and P4, so we should just compute it directly from those four points.
To be explicit: we seek a curve γ with

γ(0) = P2 (22.31W)
γ(1) = P3 (22.32W)

γ′(0) =
1
2

(P3 − P1) (22.33W)

γ′(1) =
1
2

(P4 − P2). (22.34W)

The factors of 1
2 on the tangents are there to ensure that if Pi = (i, 0) on the x-axis,

then the resulting curve will be a constant speed curve from P2 to P3, i.e., will be
γ(t) = t + 2.

Writing

γ(t) = p1(t)P1 + p2(t)P2 + p3(t)P3 + p4(t)P4, (22.35W)

we can determine the polynomials p, just as we did for the Hermite curve. The
results are

p1(t) =
1
2

(−t3 + 2t2 − t)

p2(t) =
1
2

(3t3 − 5t2 + 2)

p3(t) =
1
2

(−3t3 + 4t2 + t)

p4(t) =
1
2

(t3 − t2)

These are the four Catmull-Rom basis functions (see Figure 22W.10).
In matrix form, the Catmull-Rom spline segment for the four points is

γCR(t) = [P1; P2; P3; P4]
1
2




0 −1 2 −1
2 0 −5 3
0 1 4 −3
0 0 −1 1







1
t
t2

t3


 . (22.36W)

To handle the ends with such a matrix form, we would have to either (a) add
new control points P−1 and Pn+1 (see the exercises), or (b) derive separate matri-
ces that conform to our endpoint interpolation conditions.

Each curve segment defined by Equation 22.36W is defined for 0 ≤ t ≤ 1;
if we want to have 0 ≤ t ≤ 1 correspond to the segment from P0 to P1, and
1 ≤ t ≤ 2 correspond to the segment from P1 to P − 2, and so on, we have to
adjust things a little. In inefficient pseudocode, evaluation might look like this:

1
2 public CR(double t, Point[] Ps)
3 {
4 n = Ps.size(); // how many control points?
5 i = Math.floor(t); // if t = 3.3, we want to use P2, P3,

P4, and P5
6
7 ...test that 0 ≤ t ≤ n, and if t is in the first or

lastsegment, handle special cases...
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Figure 22W.10: The Catmull-Rom basis functions. The second and third have value 1 at
t = 0 and t = 1, respectively, indicating that the curve goes from the second to the third
control point.

8 ...but the general case is this:
9 return CRSegment(t-i, P[i-1], P[i], P[i+1], P[i+2])

10 }
11
12 private CRSegment(t, P1, P2, P3, P4)
13 {
14 double p1 = 0.5 * (-t^3 + 2*t^2 - t);
15 ... similarly evaluate p2, p3, p4 ...
16 return p1 * P1 + p2 * P2 + p3 * P3 + p4 * P4;
17 }

Listing 22W.3: Nonoptimized pseudocode for evaluating a Catmull-Rom spline.

In practice, the expression returned by CRsegment would need to be expressed
as an affine combination, because neither scalar multiples of points nor sums of
points are defined. (It can be expressed as an affine combination because the sum
of the four polynomials is exactly 1, as you can verify.) Furthermore, the actual
computation of the values for the polynomials would be done by matrix multipli-
cations, as in Figure 22W.1. But the key idea is that to compute a point on the
spline where t = 3. 3, for instance, we use the fractional part of t (i.e., 0. 3) as the
parameter value for a Catmull-Rom segment.
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Let’s look at what that code says mathematically: it tells us that we’re defining
a function γ : [0, n]→ R2 with the rule

γt =





. . . 0 ≤ t ≤ 1,

. . . 1 ≤ t ≤ 2,

...
...

p1(t − i)Pi−1 + p2(t − i)Pi + p3(t − i)Pi+1 + p4(t − i)Pi+2 i ≤ t ≤ i + 1
...

...
. . . n− 1 ≤ t ≤ n.

(22.37W)

Let’s look at just those cases of this expression in which P4 appears:

γt =





...
p1(t − 2)P1 + p2(t − 2)P2 + p3(t − 2)P3 + p4(t − 2)P4︸ ︷︷ ︸ 2 ≤ t ≤ 3

p1(t − 3)P2 + p2(t − 3)P3 + p3(t − 3)P4︸ ︷︷ ︸+p4(t − 3)P5 3 ≤ t ≤ 4

p1(t − 4)P3 + p2(t − 4)P4︸ ︷︷ ︸+p3(t − 4)P5 + p4(t − 4)P6 4 ≤ t ≤ 5

p1(t − 5)P4︸ ︷︷ ︸+p2(t − 5)P5 + p3(t − 5)P6 + p4(t − 5)P7 5 ≤ t ≤ 6

...
(22.38W)

What is P4 multiplied by? In the aggregate, it’s multiplied by the function

c(t) =





...
0 t < 2
p4(t − 2) 2 ≤ t ≤ 3
p3(t − 3) 3 ≤ t ≤ 4
p2(t − 4) 4 ≤ t ≤ 5
p1(t − 5) 5 ≤ t ≤ 6
0 6 < t
...

. (22.39W)

In general (i.e., excluding points near the start and finish), the point Pi is multiplied
by a function very similar to this: it’s zero except in the range i − 2 < t < i + 2,
and on that range, it’s defined by shifted copies of p1, p2, p3 and p4. In fact, if we
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Figure 22W.11: The four Catmull-Rom basis functions, plotted on a single coordinate sys-
tem, and then shifted and assembled to form the function b defined on the interval [−2, 2].
Because b is continuous and C1 smooth, so is the Catmull-Rom spline. Because b(0) = 1,
while b(i) = 0 for all other integers i, the Catmull-Rom spline is interpolating.

write

b(t) =





...
0 t < −2
p4(t + 2) −2 ≤ t ≤ −1
p3(t + 1) −1 ≤ t ≤ 0
p2(t) 0 ≤ t ≤ 1
p1(t − 1) 1 ≤ t ≤ 2
0 2 < t
...

, (22.40W)

then we can say that the point Pi is multiplied by b(t− i). The function b is assem-
bled from the four Catmull-Rom basis functions, as shown in Figure 22W.11.

It’s much easier to understand the properties of the Catmull-Rom spline by
looking at b than at the individual basis polynomials p1, . . . , p4. For instance, since
b is clearly continuous, the Catmull-Rom spline is continuous. And because b has
continuous derivative, the Catmull-Rom spline is C1, And because b(i) = 0 for
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every integer i except 0, and b(0) = 1, we can see that at time t = i, the Catmull-
Rom spline will pass exactly through Pi, i.e., it’s interpolating.

In fact, if we continue to ignore the endpoints, we can write the Catmull-Rom
spline in the form

γCR(t) =

n∑

i=0

Pib(t − i). (22.41W)

For any particular value of t, at most four terms in the sum will be nonzero, and the
others needn’t be evaluated. But the main value of this formulation of the Catmull-
Rom spline is that we can see it as a weighted sum of the control points, where
the weighting functions are all translated copies of one particular function, whose
properties determine the shape of the spline overall.

The summation form given for the Catmull-Rom spline is a discrete-
continuous convolution, just like the ones we saw in Chapter 18. All the machinery
of convolution can be brought to bear on the study of splines in general.

22.7W Representing curves by matrices

As we saw in the case of the Bézier and Hermite curves, we can express a poly-
nomial curve in the form

γ(t) = GMT(t), (22.42W)

where G, the geometry matrix, is a matrix whose columns store the coordinates
of the geometric controls for the curve; four points, in the case of Bézier curves,
or two points and two vectors in the case of Hermite curves, M, the basis matrix,
stores the coefficients for the blending polynomials, one polynomial per row, and
T(t) is the vector with entries 1, t, t2, and t3. Using this form, it’s easy to check the
conditions for a Bézier curve, defined by points P1, . . . , P4 and an Hermite curve,
defined by its starting and ending points A and B, and its starting and ending
vectors v, and w, to be identical. Using the subscripts H and B for Hermite and
Bézier, respectively, we want to have

GBMBT(t) = GHMHT(t) (22.43W)

for every value of t. This will happen (see the exercises) if and only if

GBMB = GHMH . (22.44W)

i.e., if

GB = GHMHM−1
B . (22.45W)
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Writing that in terms of the individual controls, and recalling the basis matrices,
this becomes

[P1; P2; P3; P4] = [A; B; v; w] ·




1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1


 ·




1 −3 3 −1
0 1 −2 1
0 0 1 −1
0 0 0 1




−1

(22.46W)

= [A; B; v; w] ·




1 1 0 0
0 0 1 1
0 1

3 0 0
0 0 − 1

3 0


 . (22.47W)

Reading that last matrix column by column, it says that the first control point P1
for the Bézier curve is the first control point A for the Hermite curve; the second
control point P2 of the Bézier curve is A + 1

3 v; the third Bézier control point P3 is
B − 1

3 w, and the last Bézier control point P4 is the second Hermite control point,
B.

The expression γ(t) = GMT(t), can be read in several ways. If we
multiply GM first, the resulting matrix linearly transforms a cubic curve in 4-
space (1, t, t2, t3) into our cubic in the plane. On the other hand, if we first multiply
MT(t), we get the four polynomials that are used in combining the control data.
Thus the spline curve can be seen as a linear combination (where the coefficients
are points or vectors) of certain polynomials. Because by varying the control data
we can get all possible cubic curve segments, these four polynomials constitute a
basis for the set of degree three polynomials. (This can be seen, equivalently, by
noting that M, in all the cases we’ll study, is invertible.) In the case of the Bézier
spline, the four rows of M sum to one. That tells us (see the exercises) that if
we move each control point by the same amount u, the Bézier curve for the new
control points will be exactly the Bézier curve for the original points, translated
by u.

22.8W Summary so far

At this point you know how to create a curve segment (Hermite) starting from one
point and direction and going to another point and direction (or from one point
to another, passing nearby two intermediate points – a Bézier curve), and how
to assemble these into a C1 spline (the Catmull-Rom spline); you can even build
a basic drawing program with a click-the-control-points mechanism for making
Catmull-Rom splines (which can then have their control points or tangent vectors
adjusted to change the shape, after which they are no longer Catmull-Rom splines,
of course). You’ve also seen that the curve segments in a spline can be expressed
in terms of matrices, and that piecewise cubics are a natural choice for the curve
segments because they can be glued together nicely and can have torsion.

22.9W B-splines

We will now generalize the previous approach — the expression of a spline in
the form

∑
Pib(t − i) — by considering other possible functions b. By choosing
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Figure 22W.12: Each function b shown at left is suitable for building a spline because
copies of b, translated by integer amounts, shown on the right, sum to the constant function
1.

some particularly nice functions to play the role of b, we can ensure some very
nice properties of the resulting spline. For instance,

• if the function b is nonzero only on a small interval, then the sum, for each
t, will in practice consist of only a few nonzero terms;

• if the function is smooth, then the spline will be smooth, and
• if the spline is to interpolate its control points, then the function must satisfy

b(0) = 1 and b(i) = 0 for integers i 6= 0.

There are also constraints on the function b: it’s important that the sum∑
Pib(t−i) be an affine combination of the points Pi; otherwise the spline will not

be translation-equivariant. To say that the sum is an affine combination (regardless
of t) is to say that

∑
b(t − i) = 1 for every t; pictorially, if we take many copies

of the graph of b and translate each by an integer amount on the x-axis, the sum of
the resulting graphs must be the constant function 1, as shown in Figure 22W.12.

If the function b, in addition to satisfying this constraint, also happens to take
on values between 0 and 1 (i.e., b(t) is never negative, and never greater than one),
then the expression

∑
Pib(t − i), for a particular value of t, is not only an affine

combination of just a few of the control points, it’s a convex combination of them,
and the resulting point must lie in the convex hull of those control points.



102 Splines and Subdivision Curves

22.9.1W Coordinate-wise constructions
When we wrote down the formula for a Bézier curve:

γ(t) = (1− t)3P1 + 3t(1− t)2P2 + 3t2(1− t)P3 + t3P4, (22.48W)

we combined the points P1 = (x1, y1), . . . , P4 = (x4, y4) with weights determined
by four polynomials. In doing so, we performed essentially the same computation
for each coordinate. The x-coordinate of γ(t), for instance, is

γ(t)x = (1− t)3x1 + 3t(1− t)2x2 + 3t2(1− t)x3 + t3x4, (22.49W)

while the y-coordinate is

γ(t)y = (1− t)3y1 + 3t(1− t)2y2 + 3t2(1− t)y3 + t3y4. (22.50W)

Instead of formulating the Bézier curve problem as “Given four points, build
a cubic curve going from P1 to P4, with initial and final tangents determined by
3(P2−P1) and 3(P4−P3),” we could has said “Given four values v1, . . . , v4, build
a cubic-polynomial combination h(t) = p1(t)v1 + . . .+ p4(t)v4 with the property
that h(0) = v1, h(1) = v4, h′(0) = 3(v2 − v1), and h′(1) = 3(v4 − v3).” The
polynomials p1, . . . , p4 that solve this problem would then also solve the original
problem, when used coordinate-wise to blend control points rather than individual
values.

This idea — that we can go from a several-coordinate interpolation problem
to a single-coordinate problem and back — is a powerful one. It also can simplify
notation in some cases, which is valuable: in building splines, we have sets of basis
polynomials, their individual coefficients, control-point lists, and coordinates of
individual control points, each of which can require an index; it’s easy to get lost
in a sea of indices. Removing even a single index is a useful improvement.

22.9.2W Piecewise-Constant splines
The simplest B-spline is the piecewise-constant B-spline. It’s defined by a
sequence P0, P1, . . . , Pn of control points (we’ll often denote such a sequence by
{Pi}n

0 or simply {Pi}, when the limits are clear), and has the form

γ(t) =

n∑

i=0

b0(t − i)Pi, (22.51W)

where b0 is the bump function defined by

b0(t) =

{
1 −0. 5 ≤ t < 0. 5
0 otherwise

, (22.52W)

which we saw frequently in Chapter 18. A parametric plot of γ consists of just
the points {Pi}, because those are the only values taken on by γ. As mentioned
in Section 22.9.1W, we can think of such a spline one coordinate at a time. If the
y-coordinate of the point Pi is yi, then the y-coordinate of the curve γ is just

γy(t) =

n∑

i=0

b0(t − i)yi. (22.53W)
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Figure 22W.13: The control values are at y = . . . , 1, 4, 2, . . .. The degree zero B-spline
on these control values can be graphed (rather than parametrically plotted); the graph is
constant on unit length intervals.

The graph of γy is step-like (see Figure 22W.13).
Higher-order splines will arise from repeated convolutions of Equa-

tion 22.51W with b0. This is the approach taken by I.J. Schoenberg [19] in his
seminal work on the subject. But modern approaches use a slightly different func-
tion: instead of using a unit-width bump centered on the origin, they use a unit-
width bump that’s nonzero on [0, 1], i.e., they define

b0(t) =

{
1 0 ≤ t < 1
0 otherwise

. (22.54W)

To be consistent with these approaches, we’ll use this latter definition of b0 for
the remainder of this chapter, and will redefine b1, b2, etc., accordingly. Doing so
means that the graph in Figure 22W.13 gets shifted, as shown in Figure 22W.14.

22.9.3W Linear splines
The formula for the degree-zero B-spline was

n∑

i=0

b0(t − i)Pi, (22.55W)

which makes sense for 0 ≤ t ≤ n, in the sense that outside of this domain, the
sum in Equation 22.55W will no longer be a convex combination of the control
points.

Equation 22.55W can be seen as a discrete-continuous convolution between a
discrete “signal” — the sequence of Ps — and a continuum signal, b0. Convolving
again with b0 should “smooth out” the degree-zero B-spline, and indeed, it does
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Figure 22W.14: The graph of Figure 22W.13, recomputed using the bump-function that’s
nonzero on [0, 1] instead of [− 1
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so. If we consider the curve defined by

γ(t) = b0 ?

n∑

i=0

b0(t − i)Pi, (22.56W)

γ(t) =

n∑

i=0

(b0 ? b0)(t − i)Pi, (22.57W)

we discover that it’s just the piecewise-linear path that we called a “connect-the-
dots” curve in Chapter 9. We can see this by explicitly computing the convolution
of b0 with itself; the result is the function

b1(t) =

{
t 0 ≤ t ≤ 1
2− t 1 ≤ t ≤ 2

=

{
t 0 ≤ t ≤ 1
1− (t − 1) 1 ≤ t ≤ 2

, (22.58W)

as we saw in Chapter 18. We’ve written the expressions so that the ith case is
presented as a function of t − i, which we’ll do for all the B-splines.

Having defined b1, we can define the degree-one B-spline by

γ(t) =

n∑

i=0

b1(t − i)Pi. (22.59W)
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Figure 22W.15: The degree one B-spline b1 is just a tent function with width two and height
one. Properties of this function help us understand properties of degree-one B-splines in
general.

Inline Exercise 22W.11: Explain why the expression in Equation 22.59W only
represents a convex combination of the control points for 1 ≤ t ≤ n. In general,
for degree-k B-splines as we’ll formulate them, the domain of definition is
k ≤ t ≤ n.

The properties of γ can be inferred from those of b1. To reinforce the point:
by looking at the plot of the degree-one B-spline function b1 (Figure 22W.15), we
can determine properties that degree-one B-splines must have in general (although
we can also determine these more directly, just by looking at the connect-the-dots
plot).

For instance, because b1(t) is zero outside of the interval 0 < t < 2, we can
conclude that in the sum

γ(t) =
∑

i

vib1(t − i), (22.60W)

for each particular value of t, there are at most two nonzero terms in the sum (the
ones at i = btc and i = dte). So each point of the curve defined by γ is influenced
by the positions of at most two control points. We’ll see shortly that it’s actually a
convex combination of the two.
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Inline Exercise 22W.12: In Chapter 18, we convolved the box function cen-
tered at 0 – let’s call that b – with itself, and got a tent function centered at 0:
t + 1 for −1 ≤ t ≤ 0 and 1− t for 0 ≤ t ≤ 1. Here we’ve shifted b to the right
by one half unit, so that b0(t) = b(t − 1/2). The convolution b0 ? b0 ends up
being b ? b shifted right by a whole unit. This is explained by a general rule:
shifting either factor in a convolution by an amount k shifts the convolution by
k as well. So shifting both halves by 1

2 shifts the convolution by 1. (a) Sup-
pose that f : R → R and h : R → R are functions with f (x) = h(x − k)and
g : R → R is another function. Let F = f ? g and H = h ? g. Use the defini-
tion of convolution to write out F(x) and H(x− k). (b) Use substitution in the
integral to show that the two are equal.

The function b1 is defined by two polynomial pieces, each defined on a unit-
length interval. When we move to quadratic and cubic B-splines, we’ll get func-
tions b2 and b3 made of three and four pieces, respectively, and we’ll want to refer
to those individual pieces. We’ll define

b1,0(t) = t for 0 ≤ t ≤ 1, and (22.61W)
b1,1(t) = 1− t for 0 ≤ t ≤ 1, (22.62W)

so that

b1(t) =





b1,0(t) 0 ≤ t ≤ 1
b1,1(t − 1) 1 ≤ t ≤ 2
0 otherwise,

(22.63W)

as shown in Figure 22W.16. To simplify later expressions, it’s convenient to have
the bi,k defined outside the unit interval as well; we define them to be zero there.
With that definition, we can say

b1(t) = b1,0(t) + b1,1(t − 1). (22.64W)

Notice that

• bk,i describes the part of bk that’s defined on the interval from i to i + 1.
• bk,i(t) makes sense for 0 ≤ t ≤ 1, so in bi, it appears in the form bk,i(t− i).

To be consistent, we define b0,0(t) = 1 for 0 ≤ t ≤ 1.
The linear B-spline with control points {Pi} is defined by

γ(t) =

n∑

i=0

b1(t − i)Pi, (22.65W)
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Figure 22W.16: (a) The tent function b1, used in defining the linear B-spline. (b) The func-
tions b1,0 and b1,1, each defined on the unit interval, which together can be used to build
b1.

but it can be rewritten. Suppose there are three control points. Then we have

γ(t) =

3∑

i=0

b1(t − i)Pi

= b1(t)P0 + b1(t − 1)P1 + b1(t − 2)P2

= (b1,0(t) + b1,1(t − 1))P0+

(b1,0(t − 1) + b1,1(t − 2))P1+

(b1,0(t − 2) + b1,1(t − 3))P2

= b1,0(t)P0+

[b1,1(t − 1)P0 + b1,0(t − 1)P1]+

[b1,1(t − 2)P1 + b1,0(t − 2)P2]+

b1,1(t − 3)P2.

More generally, this has the form

γ(t) = b1,0(t)P0 +

(
n−1∑

i=1

b1,0(t − i)Pi + b1,1(t − i)Pi−1

)
+ b1,1(t − n)Pn.

(22.66W)

Each term in the summation is either a convex combination of two adjacent control
points (when i < t < i + 1) or is zero. (The terms at the ends are special cases; if
our spline is defined by an infinite sequence of control points, then the end cases
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Figure 22W.17: The basis functions for various degrees and their supports; the function of
degree d has support [0, d + 1].

disappear.) (This form also makes clear the answer to the second-to-last inline
exercise.)

Higher degree splines
The generalization to higher degrees is now straightforward: we can convolve
with b0 repeatedly to get a piecewise-degree-k polynomial curve fk whose shape
is controlled by the values {vi}. A typical segment of this curve will be influenced
by k + 1 control values, and a typical control value will influence the shape of the
curve on an interval of length k + 1. This is explicitly carried out for quadratic and
cubic splines in Section 22.9.4W.

Just as before, the characteristics of the function bk become characteristics of
f . For instance,

• Because bk is k − 1 times differentiable, with continuous derivatives, fk is
k − 1 times differentiable, with continuous derivatives.

At the same time, the width of the support of bk is k; this means that

• for each value of t, at most k of the Pis have nonzero coefficients in
fk(x; {Pi}).

Furthermore, because the values taken on by b0 are between zero and one, and
its integral is 1.0, the values taken on by b1 lie between 0 and 1 (inclusive), and
the same is true for b2, b3, and so on. Finally, because the translates of b0 sum to
the constant function one, i.e.

∑

i

b0(x− i) = 1 for all x, (22.67W)
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and because convolving b0 with the constant function 1 results in the constant
function 1, we get that

∑

i

b1(x− i) = 1 for all x, (22.68W)

and similarly for b2, b3, and so on. As a consequence, we know

• The function fk, evaluated at t, results in a value that is a combination of
at most k + 1 of the control values (i.e., at most k + 1 control values have
nonzero coefficients); the sum of the coefficients of these values is one.

• In consequence, the value fk(x) lies in the convex hull of these k+1 control
values.

The curves fk are called the uniform B-splines of order k. In many ways they
are the easiest splines to understand, in part because of the repeated-convolution
form of their definition. Each of the statements above, about “values,” can be
converted to a geometric statement by replacing “value” with “point”: each point
on a cubic B-spline, for instance, is computed as a convex combination of four of
the control points for the spline.

From a practical point of view, the convolution definition is not terribly useful;
one would not want to have to compute multiple integrals to find one point on a
spline curve. Fortunately, one need only compute the functions b0, b1, b2, . . . once,
and one can do this explicitly (the functions that one must integrate can be inte-
grated in elementary terms, and the results are in fact polynomials). Furthermore,
the integration process is so regular that one can deduce an algebraic pattern.

But if one does not know in advance what degree spline one might use, there’s
still a relatively simple way to compute points on the curve: there happens to be a
recursive formula, due to DeBoor [6] for evaluating B-splines.

22.9.4W Quadratic and Cubic Splines
We’ve seen constant (degree-zero) and linear (degree-one) B-splines in detail.
The next two forms — quadratic and cubic — are also very useful. Quadratic
B-splines are C1-smooth, but no longer interpolate their control points; cubics are
C2-smooth, but come even less close to their control points. For each degree from
zero to three, we’ll show (1) the basis functions, using the interval [0, 1] as the
support for b0, (2) the matrix form for computing a spline segment, and (3) the
basis functions assembled into a single function, translated copies of which serve
as the coefficients of each control point.

For the degree-zero spline, the basis function is the box

b0(t) =

{
1 0 ≤ t < 1
0 otherwise

. (22.69W)

The domain of definition is 0 ≤ t ≤ n, where n is the number of control points.
The matrix form for the ith segment (t between i and i + 1) is

γ(t) = G ·M · T0(t − i), i ≤ t < i + 1 (22.70W)

where the geometry matrix G has just a single column,

G =
[
Pi
]

, (22.71W)
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the basis matrix M is 1× 1:

M =
[
1
]

, (22.72W)

and the T vector has only t to the zero power:

T(t) =
[
1
]

. (22.73W)

The linear (degree-one) B-spline is somewhat more interesting. The function
b1 function is the tent:

b1(t) =





t 0 ≤ t ≤ 1
2− t 1 ≤ t ≤ 2
0 otherwise

=





t 0 ≤ t ≤ 1
1− (t − 1) 1 ≤ t ≤ 2
0 otherwise

. (22.74W)

The domain of definition is 1 ≤ t ≤ n, where n is the number of control points.
The matrix form for the ith segment (t between i and i + 1) is

γ(t) = G ·M · T1(t − i), i ≤ t < i + 1 (22.75W)

where the geometry matrix G has two columns,

G =
[
Pi; Pi−1

]
, (22.76W)

the basis matrix M is 2× 2:

M =

[
0 1
1 −1

]
, (22.77W)

and the T(t) vector has t to two powers:

T(t) =

[
1
t

]
. (22.78W)

Inline Exercise 22W.13: It may surprise you that the control points appear in
decreasing order. Verify for yourself that γ(1. 75) really does turn out to be
1
4 P0 + 3

4 P1 by explicitly evaluating Equation 22.75W at t = 1. 75.

The quadratic (degree-two) B-spline is still more interesting. The function b2
is the convolution of the box and the tent:

b2(t) =





1
2 t2 0 ≤ t ≤ 1
1
2 (−2t2 + 6t − 3) 1 ≤ t ≤ 2
1
2 (3− t)2 2 ≤ t ≤ 3
0 otherwise

=





1
2 t2 0 ≤ t ≤ 1
1
2 (−2(t − 1)2 + 2(t − 1) + 1) 1 ≤ t ≤ 2
1
2 (1− (t − 2))2 2 ≤ t ≤ 3
0 otherwise

.

(22.79W)

The domain of definition is 2 ≤ t ≤ n, where n is the number of control points.
The matrix form for the ith segment (t between i and i + 1) is

γ(t) = G ·M · T1(t − i), i ≤ t < i + 1 (22.80W)
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where the geometry matrix G has three columns,

G =
[
Pi; Pi−1; Pi−2

]
, (22.81W)

the basis matrix M is 3× 3:

M =
1
2




0 0 1
1 2 −2
1 −2 1


 , (22.82W)

and the T(T) vector has t to three powers:

T(t) =




1
t
t2


 . (22.83W)

Finally, for the uniform cubic B-spline, the basis function has support of width
4:

b3(t) =
1
6





t3 0 ≤ t ≤ 1
−3(t − 1)3 + 3(t − 1)2 + 3(t − 1) + 1 1 ≤ t ≤ 2
3(t − 2)3 − 6(t − 2)2 + 4 2 ≤ t ≤ 3
(1− (t − 3))3 3 ≤ t ≤ 4
0 otherwise

. (22.84W)

The domain of definition is 3 ≤ t ≤ n, where n is the number of control points.
The matrix form for the ith segment (t between i and i + 1) is

γ(t) = G ·M · T1(t − i), i ≤ t < i + 1 (22.85W)

where the geometry matrix G has four columns,

G =
[
Pi; Pi−1; Pi−2; Pi−3

]
, (22.86W)

the basis matrix M is 4× 4:

M =
1
6




0 0 0 1
1 3 3 −3
4 0 −6 3
1 −3 3 −1


 , (22.87W)

and the T(T) vector has t to four powers:

T(t) =




1
t
t2

t3


 . (22.88W)

22.9.5W Refinement
Figure 22W.18 shows an interesting property of B-splines: if we know the control
points for a spline γ, we can construct control points for a curve that traverses the
first half of γ! (We can, of course, also find one that traverses the second half.)
The curve segment defined by the four points has domain 2 ≤ t ≤ 3.
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Figure 22W.18: The cubic B-spline γ, drawn in a thick green line, is defined by the control
points P0, . . . , P3. The cubic B-spline β, drawn in a thin black line, is defined by the control
points Q0, . . . , Q3. These have been chosen so that the entire β curve matches the first half
of the γ curve, i.e., so that β(2 + t) = γ(2 + t/2) for t ∈ [0, 1].

Give the control points Pi(i = 1, . . . , 4), we find the control points Qi by
simply writing down what it means for β(2 + t) = γ(2 + t/2). The matrix form
for this uses the fractional part, f , of t, which lies between 0 and 1; for the two
expressions to be equal, we need

[
Q3; Q2; Q1; Q0

]
·M · T(2f ) =

[
P3; P2; P1; P0

]
·M · T(f ). (22.89W)

for every f ∈ [0, 1
2 ].

Here M is the B-spline basis matrix; to simplify matters, we’ll use P and Q to
denote the two geometry matrices, so the condition is now

Q ·M · T(2f ) =P ·M · T(f ). (22.90W)

Since T(2f ) =




1
2f
4f 2

8f 3


, we can write

T(2f ) =HT(f ) (22.91W)

=




1
2

4
8


T(f ) (22.92W)

Substituting, we get

Q ·M ·H · T(f ) =P ·M · T(f ). (22.93W)
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Since this is true for every f ∈ [0, 1
2 ], the matrices must be equal (see Exer-

cise 22W.8). Hence we can compute the coordinates for the Q points:

Q ·M ·H =P ·M (22.94W)

Q =P ·M ·H−1 ·M−1. (22.95W)

Everything we’ve said so far applies to all the classes of splines we’ve dis-
cussed, since nothing special about the B-spline basis matrix has been used: you
can always regenerate the first or second half of a spline segment by choosing new
control points. Now let’s compute explicitly:

Q =P ·M ·H−1 ·M−1 (22.96W)

=P
1
6




0 0 0 1
1 3 3 −3
4 0 −6 3
1 −3 3 −1







1
1
2

1
4

1
8







1
6




0 0 0 1
1 3 3 −3
4 0 −6 3
1 −3 3 −1







−1

(22.97W)

=P · 1
8




1 0 0 0
6 4 1 0
1 4 6 4
0 0 1 4


 . (22.98W)

This tells us that Q3 = 1
8 (P1 + 6P2 + P3), Q2 = (P1 + P2)/2, Q1 = 1

8 (P0 +
6P1 + P2), and Q0 = (P0 + P1)/2. (Remember that the Qs and Ps appear in
decreasing order!)

If we did an analogous computation for the second half of the curve, we’d find
that the four control points were exactly Q1, Q2, Q3, and (P2 + P3)/2.

Thus if we had a B-spline defined by a sequence of points including
P0, . . . , P3, we could replace those four with Q0 = (P0 + P1)/2, Q1 = 1

8 (P0 +

6P1 + P2), Q2 = (P1 + P2)/2, Q3 = 1
8 (P1 + 6P2 + P3), and Q4 = (P2 + P3)/2,

and similarly for each other set of four sequential control points. Figure 22W.19
demonstrates this.

In the figure, the vertices of the new “refined” control polygon are closer to
the B-spline than those of the original polygon, and it certainly appears that if we
refined again and again, the control polygon’s points would approach the B-spline
itself. We’ll show, presently, that this is indeed the case.

There’s an alternative path to the same result (i.e., to finding a refined control
polygon that defines the same curve). It’s based on the observation that if we
compress the cubic B-spline function b3 by a factor of two, i.e., we define

c3(t) = b3(2t), (22.99W)

then b3 can be written as a weighted sum of translates of c3, as shown in Fig-
ure 22W.21. The details are given in the exercises, but the main idea is that a
corresponding statement is certainly true for b0: the box function on [0, 1] can cer-
tainly be written as a sum of two half-as-wide box functions, as Figure 22W.20
shows. Convolving this equality with a half-width box gives a corresponding state-
ment for b1; convolving twice more leads to the statement for b3.
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Figure 22W.19: A spline defined by a sequence of control points Pi, shown as a polygon
with thin edges, and the refined set of control points, shown as a polygon with thick edges,
that defines the same B-spline. The refined set includes midpoints of all the original control-
polygon edges, and a 1/8 − 3/4 − 1/8 blend of each original control point with its two
neighbors. Thus the refined control polygon has about twice as many vertices as the origi-
nal.
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Figure 22W.20: The box function b0 is a sum of two translated half-width box-functions.
Letting c0(t) = b0(2t), we have b0(t) = c0(t) + c0(t − 1

2 ).
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Figure 22W.21: The cubic B-spline basis function b3 can be written as a weighted sum of
five translated copies of the function c3(t) = b3(2t); the five colored curves sum up to the
thin black curve, b3.

That b3 is a weighted sum of translates of c3 (the weights are 1/8 of 1, 4, 6, 4,
and 1) implies the refinement formula for cubic splines; to see this, consider a
spline

γ(t) =
∑

Pib3(t − i). (22.100W)

We’ll write out a small portion of this sum, and the substitute the c3 combination
for the b3s:

γ(t) = . . .+ P0b3(t) + P1b3(t − 1) + P2b3(t − 2) + . . . (22.101W)
1
8

P0(c3(t) + 4c3(t − 1/2) + 6c3(t − 1) + 4c3(t − 3/2) + c3(t − 2))+

(22.102W)
1
8

P1(c3(t − 1) + 4c3(t − 3/2) + 6c3(t − 2) + 4c3(t − 5/2) + c3(t − 3))+

(22.103W)
1
8

P2(c3(t − 2) + 4c3(t − 5/2) + 6c3(t − 3) + 4c3(t − 7/2) + c3(t − 4))) + . . .

(22.104W)

If we gather terms multiplying each individual translate of c3, we see, for
instance, that c3(t − 2) (underlined in the equation above) is multiplied by 1

8 P0 +
6
8 P1 + 1

8 P2, while c3(t−3/2) is multiplied by 1
2 P0 + 1

2 P1. In short, we can see that
γ(t) can be written as a sum of translates of c3(t), with the coefficients alternating
between (a) averages of adjacent Pis, and (b) (1/8, 3/4, 1/8) weighted averages
of triples of Pis. If we replace c3 with b3 in this sum, the resulting curve does not
change geometrically (although its parameter domain doubles in length), and we
have recovered the refinement scheme we discovered earlier.

The preceding paragraphs provide only the most informal sketch of a proof
that the two methods lead to the same result, but for the math-savvy, it’s not hard
to make this rigorous. The second approach has the advantage that it generalizes
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nicely: any time a function f of some “size” (the support of b3 is the interval
[−2, 2], so we could say its “size” is four) can be written as a weighted sum of
functions of some smaller size (particularly ones that are scaled-down versions of
f ), a similar approach works. This is an important idea in the study of wavelets,
which can be widely used to efficiently represent functions in computer graphics.

We’ll return to this idea of refining the control polygon for a B-spline when
we discuss subdivision in Section 22.14W.

22.10W Non-uniform B-splines

In uniform B-splines, each segment was defined on an interval of unit length. We’ll
see, in this section, why segments of other lengths, including zero, are in fact natu-
ral to include, and allow the user important kinds of shape control on a curve. The
significant point is the control of continuity without the loss of geometric control.
In the case of uniform B-splines, we know that the curves are all parametrically
smooth up to second degree; for certain configurations of control points, however,
the parametric plots can have reduced degrees of continuity (curvature or even tan-
gent discontinuities), but these only occur in these specially-aligned-control-point
configurations, which invariably result in changes to the character of the curve.
For instance, to get a sharp corner in a uniform cubic B-spline requires that each
of the segments meeting at the corner be linear. Nonuniform B-splines (NUBS)
address this limitation.

Just as a uniform B-spline consists of segments that are joined at a sequence
of equispaced t-values, a nonuniform B-spline consists of segments joined at a
sequence of arbitrarily-spaced t-values. For a B-spline of degree d, we’ll have a
nondecreasing knot sequence t−d+1 ≤ t−d ≤ . . . ≤ tn (the reason for the peculiar
numbering will be apparent shortly). The t-values are called “knots” and must
satisfy ti ≤ ti+1 for all i, i.e., the knot sequence must be nondecreasing. If we
choose a sequence of consecutive integers as knots, the nonuniform B-spline will
turn out to be a uniform B-spline1 (see the exercises).

Nonuniform B-splines have an advantage over uniform B-splines: you can
insert an extra knot and control point without changing the curve at all. With
uniform B-splines, this is impossible in general, for two reasons. First, if you
have a uniform B-spline of degree d with control points P0, . . . , Pk, its domain is
d ≤ t ≤ k; if you insert an extra control point between, say, P2 and P3, then the
domain will be d ≤ t ≤ k + 1, and two functions with different domains cannot
be the same. But this objection seems quibbling; perhaps we could require only
that the B-splines appear the same, i.e., have the same parametric plots. With this
reduced criterion, you can do control-point insertion in degree zero and degree one
uniform B-splines. For degree zero, you just duplicate one of the control points;
for degree one, you insert an extra control point anywhere on an edge of the control
polygon. But for degree two, no such insertion technique is possible in general.

Associated to a knot sequence is a collection of nonuniform B-spline basis
functions for each degree d, having several important properties:

• Wherever d + 1 of the basis functions of degree d are nonzero, they sum to
one.

1. This suggests that “nonuniform” is not a great choice of names; nonetheless, it’s firmly
embedded in the literature.
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Figure 22W.22: The basis-functions of degree zero, one, and two, for the knot sequence
1, 2, 3, 3, 4, 5, 6, 6, 6, 7, 8, 10, 15; these knot-values were chosen to show the effects of non-
uniform spacing and replicated knots. Basis functions of each degree cycle through four
different line-types (solid, dashed, dotted, and dot-dash) to help distinguish them. Note that
as the degree increases, the number of splines of that degree decreases. Note, too, that for
the degree-zero basis functions, the sum of the functions is one for 1 ≤ t ≤ 15, while for
degree-one basis functions, the sum is one for 2 ≤ t ≤ 10; over what range is the sum one
for the degree-two basis functions?

• The degree-d basis functions are simply expressed in terms of those of
degree d − 1 (for d > 0).

• The degree-zero basis functions are simply the characteristic functions of
the half-open intervals [ti, ti+1).

Figure 22W.22 shows the basis functions for several degrees and a particular
knot-sequence. The degree-zero basis functions are easy to understand but hard to
see, since their graphs join into a single continuous line at y = 1, the difference
in line-styles used to draw them helps distinguish them. Notice that some of the
intervals have length zero, and the graphs of the corresponding basis functions
have only a single point.

The inductive formula for higher-order B-splines in terms of lower-order ones
is relatively simple; we’ll build up case by case. Letting Bi,d denote the ith spline
of degree d, we have

Bi,0 =

{
1 ti ≤ t < ti+1

0 otherwise
. (22.105W)

and

Bi,1 =
t − ti

ti+1 − ti
Bi,0(t) +

ti+2 − t
ti+2 − ti+1

Bi+1,0(t). (22.106W)

Notice that this has the form something · Bi,0 + something else · Bi+1,0, i.e., it’s
a weighted sum of the two splines of lower order. The first coefficient (the first
fraction) is a function that rises from 0 to 1 as t varies from ti to ti+1; the second
falls from 1 to 0 as t varies from ti+1 to ti+2. Note that this is just a generalization
of the inductive formula we saw earlier for uniform B-splines.
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Inline Exercise 22W.14: Write out the expressions for B4,1(t) and B5,1(t). Ver-
ify that the coefficients of B5,0(t) are a pair of functions that sum to 1 on the
interval (t5, t6] (i.e., on the support of B5,1). Generalize, and conclude some-
thing about the sum

∑
i Bi,1(t) as a function of t.

The expression for Bi,1 above does not make sense when ti = ti+1 or ti+1 =
ti+2; in that case, the meaning is modified: any term that’s undefined because of a
divide-by-zero is to be ignored.

Inline Exercise 22W.15: On what interval is the function B4,1 nonzero? Gener-
alize to describe the support of the function Bi,1 in terms of the knot sequence.
For which values of i does your answer make sense? Does it make sense for
i = 0, for instance? For i = −1?

The recurrence for second-degree nonuniform B-splines is exactly analogous
to that for first degree: two adjacent first-degree B-splines are blended by functions
that rise from zero to one (or fall from one to zero) over their respective supports:

Bi,2 =
t − ti

ti+2 − ti
Bi,1(t) +

ti+2 − t
ti+3 − ti+1

Bi+1,1(t). (22.107W)

Inline Exercise 22W.16: Write out an analogous recurrence for the degree-
three nonuniform B-spline.

Inline Exercise 22W.17: What’s the support of Bi,d in general? For which
values of i does this make sense?

Inline Exercise 22W.18: Explain why the nonuniform basis functions of
degree d sum to the constant function 1.

Because the nonuniform B-spline basis functions are all non-negative (con-
vince yourself of this!) and sum to one, a B-spline, defined as a sum of these
functions multiplied by control points, will always lie in the convex hull of the
control points; indeed, because only certain basis functions are nonzero on each
interval, the corresponding points on the B-spline curve will lie in the convex hull
of the corresponding control points. For example, the function B1,1 is nonzero on
the interval t1 ≤ t < t3; B2,1 is nonzero only on t2 ≤ t < t4, and B3,1 is nonzero
only on t3 ≤ t < t5. Thus on the interval t3 ≤ t ≤ t4, the curve defined by
γ(t) =

∑
i Bi,1(t)Pi lies in the convex hull of P1, P2, and P3.

22.10.1W Effects of repeated knots and repeated
control points

Repeated control points in a nonuniform B-spline have the same effect as those in
a uniform B-spline: they constrain one or more curve-segments to lie in the convex
hull of fewer than d + 1 points. As the number of repetitions increases towards
the degree, d, two adjacent segments will reduce to simple line segments; when
a control point is replicated d + 1 times, one segment becomes just a point, with
a line-segment to either side. Furthermore, as the multiplicity of a control-point
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Figure 22W.23: (a) A nonuniform B-spline with knot sequence [12345678], (b) A nonuni-
form B-spline with the same control points, but knot sequence [145678910], showing that
the two resulting splines are the same.
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Figure 22W.24: (a) A two-segment uniform B-spline with control points P1 through P5;
knots are shown as small circles. (b) A similar spline, but P3 has been moved to coincide
with P2. (c) Now P4 has been moved to coincide with P3 and P2. The solid and dashed
polygons show the convex hulls in which the first and second segments must lie; because
of the control-point duplications, these degenerate to become just line segments, and the
curve ends up with a sharp corner at the repeated control point.

increases, the curve is pulled closer and closer to that point, until at multiplicity d
the curve actually interpolates (passes through) the point.

By contrast, repeated knots in a nonuniform B-spline reduce the degree of con-
tinuity at the knot. When all knots are distinct in a cubic nonuniform B-spline, for
instance, the curve is C2, but when a knot is duplicated, the two adjacent segments
join at the knot with only C1 continuity; a triple knot yields C0 continuity (the
curve is continuous, but the tangent changes suddenly at the knot); a quadruple
knot yields C−1 continuity, i.e., the curve is not even continuous at the knot. This
is illustrated in Figures 22W.23 – 22W.26. Indeed, the actual spacing of the knots
is largely irrelevant; the only thing that influences the curve shape is when two
adjacent knots are identical. It therefore is possible to work with NURBS using
only integer knots, with some knots being replicated. One advantage of this is
that once can consider all possible sequences of four adjacent-or-identical inte-
gers starting at 1 (i.e., (1,2,3,4), (1,1,2,3), (1,2,2,3), etc.), and compute, once and
for all, the associated NURBS basis functions, and represent them in the same
matrix form that we used for other curve types.

22.10.1W.1 Knot insertion
Nonuniform B-splines are rich enough to allow knot insertion: we can take a
nonuniform B-spline with a control-point sequence {Pi} and knot-sequence {ti}
and insert an extra control point and knot, say . . . , P1, P0, P1, Q, P2, P3, . . . and
t−1, t0, t1, s, t2, t3, . . . and have the resulting spline be identical. We can do this for
any new knot value (as long as, in our example, t1 ≤ s ≤ t2), but having chosen
the new knot value, we must choose the new point Q carefully so as not to disturb



120 Splines and Subdivision Curves

P1

P2 P3

P4 P5

P6 P7

P8

t 4 t 5

t 6 t 7

t 8
t 9 t 4

t 5 =t 6

t 7

t 8 t 9

t 4

t 5 =t 6 =t 7

t 8 t 9
t 4

t−5 t 5 =t 6 =t 7 =t 8

t 9

Figure 22W.25: (a) A five-segment nonuniform B-spline with control points P1 through P6

and knot-sequence (t1, . . . , t11) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); (b) A similar spline, but t6

has been set equal to t5, removing the second segment of the curve, and causing the control
hulls for the first and third to overlap in a line segment instead of a triangle; the curve point
associated to t5 = t6 is forced to lie on that line. (c) Now t7 has also been made identical
to t5 and t6, eliminating another curve segment and making the overlap of adjacent hulls
degenerate to a single point, through which the curve must pass. (d) When we do this once
more (setting t8 = t7 = t6 = t5), we actually generate a discontinuity in the curve. The
point labelled t−5 corresponds to a parameter value just a tiny bit smaller than t5, because
the curve segment from t4 to t5 is defined for t4 ≤ t < t5, i.e., it terminates just before the
parameter reaches t5. Note that as we raised the knot’s multiplicity, we reduced the degree
of continuity of the spline at that knot by one each time.
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Figure 22W.26: A nonuniform B-spline in which control points are chosen to lie
sequentially along the x-axis, but with varying y-values; certain knots are repli-
cated to show the continuity-reducing effect of this replication. The knot-sequence is
[0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13]. Each control point has a dashed line
to the midpoint of each segment that it influences.



22.10W Non-uniform B-splines 121

the shape of the spline. The details are beyond the scope of this book, but are
discussed in any book on splines.

22.10.2W Rational Curves
While the curve types we’ve discussed are quite rich, they cannot be used to
exactly represent certain important curves, namely the conics, the solutions to
equations of the form Ax2 +Bxy+Cy2 +Dx+Ey+F = 0, which include ellipses,
hyperbolas, and circles. To make this clear, consider the case of a cubic curve

γ(t) = (x(t), y(t)) = (ax + bxt + cxt2 + dxt3, ay, +byt + cyt2 + dyt3).
(22.108W)

Suppose that γ(t) lies on the circle x2 + y2 = 1 for every t. Then the functions
x and y must satisfy x(t)2 + y(t)2 = 1. It’s not hard to show (see the exercises)
that the coefficient of t6 in the left side of this equation is d2

x + d2
y ; the coefficient

of t6 on the right is zero; hence dx = dy = 0. Similar arguments show that cx =
bx = cy = by = 0 as well, from which we conclude that both x and y are constant
functions! The only cubic curves whose images lie on a unit circle are degenerate
ones that remain at a single point.

If we are hoping to use our curves to describe the shapes of manufacture,
circles are essential. Fortunately, there’s a useful observation that lets us produce
circles (and other conics) with cubic curves: even though there’s no cubic curve
in the plane that traces out a circle, there is a cubic curve in 3-space which, seen
in perspective, traces out an arc of a circle in the image plane. Using a perspective
projection based on looking along the z-axis, from the origin, and projecting onto
the z = 1 plane, this means we can find a curve γ(t) = (x(t), y(t), z(t)), with x, y,
and z all cubics in t, with the property that

(x(t)/z(t))2 + (y(t)/z(t))2 = 1 (22.109W)

for all t. In particular, if we let

x(t) = 1− t2 y(t) = 2t z(t) = 1 + t2 (22.110W)

then the equation above holds. Figure 22W.27 shows the curve γ in 3-space and its
projection to the z = 1 plane; in 3-space, γ describes a parabola; in the projection
plane, it traces out all but one point of a circle.

Given a curve γ(t) = (x(t), y(t), z(t)) in 3-space, the associated rational curve
Γ(t) = (X(t), Y(t)) is defined by X(t) = x(t)/z(t), Y(t) = y(t)/z(t). At values
of t where z(t) = 0, X(t) and Y(t) are undefined (and near those values they
tend to vary rapidly with respect to t, creating challenges for various numerical
techniques). It’s conventional to replace the letter z with w, however, and refer to
this extra coordinate as a weight. Thus a rational spline in the plane is typically
described by a sequence of control points (xi, yi) in the plane, each with an asso-
ciated weight wi; to compute points on the spline, we consider triples (xi, yi, wi) in
3-space, find the spline t 7→ (x(t), y(t), w(t)) that they define, and then divide by
w to get X(t) = x(t)/w(t) and Y(t) = y(t)/w(t). So while the user of a rational
spline considers the weights to be distinct from the coordinates, the implementor
treats all three as coordinates in a higher-dimensional space.

Both uniform and nonuniform B-spline curves have rational forms, called
rational B-splines and nonuniform rational B-splines (or NURBS) (and knot-
insertion, although slightly more complex, works for NURBS as well as NUBS).
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Figure 22W.27: The curve (x(t), y(t), z(t)) = (1 − t2, 2t, 1 + t2) in 3-space, seen from the
origin, looking along the z-axis, looks like a circle; here we see the curve projected into
the z = 1 plane; the only point of the unit circle that’s missing is (x, y) = (−1, 0), which
corresponds to t = ±∞.

22.10.3W Transformations and rational splines
Supposed we have a spline η based on control points Pi, and we transform each of
the points Pi by an affine transformation T to get the points Qi = T(Pi). If we now
form a spline ζ based on the points Qi, how will it be related to η? It turns out that
ζ(t) = T(η(t)) for all t, i.e., we can either compute the spline and then transform
all the points along it, or we can transform the control points and compute a new
spline – the two results will be the same.

What about rational splines? Is the same thing true? Suppose we have a ratio-
nal spline, γ, based on points Pi in 3-space, and we transform those points by
some transformation T to get points Qi = T(Pi). We form a new spline, λ, based
on the Qi. We then compute Γ and Λ, the associated rational curves. How are Γ(t)
and Λ(t) related, if at all? One might hope that Γ(t) = T(Λ(t)), but this doesn’t
even make sense: Γ and Λ are curves in 2-space, while T is a transformation on
3-space. In fact, the most we can say is that λ = T ◦ γ, i.e., we can compute
the spline in 3-space before or after transformation, but we must do so before the
“homogeneous division by w.”
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Figure 22W.28: The de Casteljau construction of a curve for four control points: we divide
the edges edges between adjacent control points into ratios t and 1− t to get point Qi,i+1(t);
we repeat the operation on the Qs to get Ri,i+1,i+2(t), and finally join to two Rs to get a point
S(t). As we vary t from 0 to 1, the points S(t) traces out a curve that starts at P1 and ends
at P4, and lies within the convex hull of the Ps.

22.11W The de Casteljau algorithm

As a kind of transition from parametric cubic splines to subdivision curves, we’ll
now investigate a particular way to construct a curve from a set of four control
points, due to de Casteljau [8]. The idea is quite simple: we take the edges P1P2,
P2P3, and P3P4 and divide them into ratios t and 1 − t (where t is some number
between 0 and 1), producing points Q12(t), Q23(t), and Q24(t) (see figure 22W.28).
We repeat the operation on the Qs to get points R123(t) and R234(t). Finally, we
repeat the operation on the Rs to get a single point S(t). As we vary t, the point
S(t) traces out a curve.
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Figure 22W.29: The de Casteljau construction for t = 1
2 . The boldface polygon at the

left (consisting of P1, Q12(
1
2 ), R123(

1
2 ), and S( 1

2 ), and the corresponding four points on the
right hand side (S( 1

2 ), R234(
1
2 ), Q34(

1
2 ), and P4) each define their own curves through the

de Casteljau construction. Calling these SL(t) and SR(t) (for ‘left’ and ‘right’), we can ask
how SL, SR, and S are related.

The curve traced by S(t) is a cubic, as we can see by writing out the individual
terms:

Qi,i+1(t) = (1− t)Pi + tPi+1 (22.111W)
Ri,i+1,i+2(t) = (1− t)Qi,i+1(t) + tQi+1,i+2(t) (22.112W)

= (1− t)((1− t)Pi + tPi+1) + t((1− t)Pi+1 + tPi+2)(22.113W)
= (1− t)2Pi + 2(1− t)tPi+1 + t2Pi+2 (22.114W)

S(t) = (1− t)R123 + tR234 (22.115W)
= (1− t)((1− t)2P1 + 2(1− t)tP2 + t2P3) (22.116W)

+t((1− t)2P2 + 2(1− t)tP3 + t2P4) (22.117W)
= (1− t)3P1 + 3(1− t)2tP2 + 3(1− t)t2P3 + t3P4(22.118W)

As you can see, the curve traced out by S(t) is just the Bézier curve! The
coefficients of the Pis are just the Bernstein polynomials. So this geometric con-
struction corresponds to a polynomial curve description. We’ll study this kind of
correspondence in much more detail in the next section. Before moving on, how-
ever, let’s look at a particular instance of the de Casteljau construction, namely
t = 1

2 (see Figure 22W.29).
The left half of the construction yields a polygon consisting of

P1, Q12( 1
2 ), R123( 1

2 ), and S( 1
2 ); if we applied the de Casteljau construction to this

polygon, we’d get a curve t 7→ SL(t) that starts at P1, and ends at S, just as does the
left half of the original de Casteljau construction, i.e., S([0, 1

2 ]). It turns out that S
and SL are very closely related: for 0 ≤ t ≤ 1, we have SL(t) = S(t/2); similarly,
for the right half of the curve, we can define SR, and find that SR(t) = S( 1

2 + t/2).
In other words, rather than applying the de Casteljau construction for every value
of t as a way to trace out the curve, we could do it just for t = 1

2 , to find the mid-
point of the curve, and then apply it separately to each half, to find the t = 1/4 and
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t = 3/4 points. Working recursively, we can find S(t) for every point t of the form
n/2k, where n is an integer from 0 to 2k, and k is any nonnegative integer (such
points are called dyadics). Since every real number between 0 and 1 is arbitrarily
close to a dyadic point, we’ve effectively computed the shape of the curve2.

Programming Exercise 22W.2: Use the 2D testbed to write a program that
lets the user click on four control points and then move a slider from 0 to 1; as the
slider moves to value t, show the de Casteljau construction of S(t), and highlight
the point S(t) on the Bézier curve determined by the four points.

22.12W A curve-drawing program
Figure 22W.30: Drawing a
smooth path in Inkscape.

With the techniques described so far, you can build a basic curve-editing program.
We’ll model our program after the “curve” portion of Inkscape, a simple and easy
to use drawing program. Because we’ll want to use the word “curve” for a small
piece of such a drawing, we’ll use the word “path” for a sequence of smaller
pieces. Figure 22W.30 shows a path being drawn. The user clicked on the starting
point at the left, then clicked in mid-figure, at the joint between the red and green
arcs and dragged downward and a little to the right, releasing at the lower end
of the blue tangent line, and has moved to the right preparing to either add more
points or double-click to end the path. The control points are called nodes; those
at the end of a sequence of segments are called endnodes; the others are internal
nodes. The small diamonds or squares that indicate the nodes during editing, and
the small circles at the ends of the tangents are called handles.

Figure 22W.31: The user adjusts
one of two tangents at a bend in
the path.

During the dragging operation, the tangent line was visible and moved and
adjusted its length as the user moved the mouse. As the user moves on to click the
next point, the red portion of the path is continuously updated.

Once a path has been initially sketched, the user can either draw more paths or
switch to path-editing mode, shown in Figure 22W.31. Here the user has clicked
on the central node, causing its tangent to be shown, and then has indicated that it
should not be a “smooth” point any more, but instead should be a “corner” point,
in which the two tangents can be manipulated independently. By clicking on the
handle at the end of the upper tangent, the user is adjusting the shape of the upper
curve near the “corner.”

When the user is in path-editing mode, a menu bar (Figure 22W.32) appears
that allows various operations. In editing mode, the path is displayed with its nodes
indicated as small diamonds (for endnodes or “corner” points — see below) or
squares (for smooth or symmetric nodes). The user can select a single node, by
clicking on it, or a pair of adjacent nodes, by clicking on the curve or line segment
between them. In each case, the selected nodes are highlighted, and their tangents,
if any, are shown.

Figure 22W.32: Path-editing
tools in Inkscape.

Reading from left to right, the available operations are

• Add a node to the middle of the selected segment (does nothing if a single
node is selected).

• Remove the selected node or nodes.

2. Indeed, from the point of view of computing, dyadic points are exactly those that are
representable in binary with finitely many bits, so they’re the numbers that we mostly
see in computers.



126 Splines and Subdivision Curves

• Join two selected endnodes.
• Insert a segment between two selected endnodes.
• Delete a segment between two adjacent internal nodes.
• Split a path at an internal node, creating two identical but independent

endnodes, one for the end of the first part, one for the start of the second
part.

• Corner: change the selected nodes to “corner” nodes, whose two tangent
control handles are independent.

• Smooth: change the selected node(s) to “smooth” nodes, in which the two
tangents are parallel.

• Symmetric: change the selected node(s) to be “symmetric”, with the two
tangents being equal and opposite.

• Line: Make the selected segment(s) into line(s).
• Curve: Make the selected segment(s) into curve(s).

Each of these operations is only vaguely defined by the description above.
Questions remain, like “When we make a segment into a line, and both ends were
previously ‘symmetric,’ what should they be after the conversion?” Making wise
choices in situations like this has a large effect on usability of the system. You
should be guided by the principle of least surprise: do the thing that most users
expect, or are least surprised by in practice. Some of the choices made in Inkscape
seem unnatural to us, so we won’t try to emulate them exactly. Indeed, all we
want to discuss here is the underlying data structures for representing paths in a
program.

To capture the general design of paths in Inkscape, we create a model. First,
a path is a sequence of segments, and each segment is either a line or a curve.
The segments need not be connected; a path may have several connected subse-
quences which are not (visually) connected to one another. All editing operations
will apply to a single path. (Inkscape does, however, allow the user to join two
paths into one larger path, so that their endnodes can have a segment inserted to
join them.) Each segment is either a line-segment or a curve, and has a start node
and and end node. Two adjacent segments in a path often share a node, although
not always. A node shared by two segments is “internal”; a node that’s in only one
segment is an “endnode.” If all the segments containing a node are deleted, then
the node is deleted as well.

Because typically curve-segments in Inkscape are controlled by two points
and two tangents, it seems natural to represent them as Hermite curves.

Nodes themselves are complex:

• A node joining two straight segments has only one adjustable characteris-
tic: its position.

• A node joining a straight segment to a curve segment has a position and
a tangent (on the curve side). The tangent may be arbitrarily adjustable,
making the node a corner, or make be constrained to be parallel to the line-
segment, making the corner “smooth.” Because for a line segment there’s
no tangent magnitude, only a direction, there’s no notion of a “symmetric”
node joining a line- to a curve-segment.
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• A node joining two curve segments has a osition and two tangents. The
tangent may be independently adjustable (a “corner”), required to be par-
allel and point in opposite directions (“smooth”) or required to be parallel,
in opposite directions, with the same magnitude (“symmetric”)

• An endnode for a line segment has only a position.
• And endnode for a curve segment has both a position and a tangent vector.

Inkscape also seems to allow curve segments where only one endnode has a
tangent; it appears that these may be represented by the quadratic analog of an
Hermite curve, in which we specify two endpoints and one tangent. Since such
segments are difficult to control (we find ourselves selecting the no-tangent end
and applying the “smooth” operation to give it a tangent), we’ll omit this case.

So our design now has several classes of objects:
A path is a sequence of subpaths, and a subpath is a sequence of segments.
There are two kinds of segments: line and curve.
Each segment has two nodes. A node may be a corner, smooth node, or sym-

metric node. A line-segment may not have a symmetric node.
For simplicity, we’ll insist that a node has a reference to any segment that

contains it; we’ll call the list of containing segments the parents of the node. A
node must have at least one parent, and no more than two. A node with one parent
is an “end node,” while one with two parents is an “internal node.”

With this design, we have a rich enough model to support all the inkscape
operations.

During interaction with a path, a selection is a subset of the path’s nodes. We’ll
say that a segment is ’selected’ if both its nodes are selected, so if we select three
nodes in sequence, joined by two segments, and perform the “add” operation, two
new nodes will be created, one on each segment. What if we select the endnode
of one subpath and the endnode of another subpath and perform the “add” opera-
tion? We cannot add a control point mid-segment, because there’s no segment. A
convenient (and low-surprise) choice is to say “we add a new point in the interior
of every selected segment,” so that in this cases, no nodes are added at all. Think
through the remaining operations (except for “Join,” which seems under-specified
to us) and try to consider all possible cases and what the behavior should be in
each case.

So far we’ve talked about the behavior in broad terms, but what’s entailed in
adding a new node in the middle of a segment? There are two cases.

Figure 22W.33: Inserting the
midpoint in a line segment.

For a line segment from node n1 to n2, we should add the midpoint m as a new
node, create line segments from n1 to m and m to n2, and replace the segment from
n1 to n2 in the path with these two new segments, as shown in Figure 22W.33. We
should also update the “selection” when we are finished with all segment additions
so that it includes the newly created node.

For a curve segment, we have an Hermite curve γ defined by its starting point
P, starting tangent v, ending point Q, and ending tangent w. We can create a new
point X = γ( 1

2 ), and a new vector u = γ′( 1
2 ). We then replace our curve segment

by two new ones, the first defined by P, X, v and u, the second defined by X, Q, u,
and w. We once again must add X to the selected-nodes collection after we’ve
completed the addition operation for all selected segments.

The deletion operation raises a new complexity, even when there’s only a sin-
gle internal node selected. Suppose that node joins a curve-segment AB to a line-
segment BC (Figure 22W.34). Deleting node B will replace those two segments
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with a single one. Should the replacement segment be a curve or a line? And
should its nodes be corner nodes, smooth nodes, or symmetric nodes?

Figure 22W.34: How can we
delete node B?

There’s no “right answer” to questions like this. But one possible answer is to
say “it should be a curve segment, because that retains any tangent information
we had before the operation; if it’s unwanted, it’s easy to change the segment to
a line. But if we make the new segment a line, we’ve lost the tangent information
forever”3. To build a curve segment, we need two points — the node locations A
and C provide these — and two tangent vectors. The tangent to the Hermite curve
at A provides one, but there’s no tangent vector for the line-segment at C, only a
direction. An ad hoc compromise is to make a tangent vector at C whose direction
is determined by the line segment BC, but whose magnitude is the same as the
tangent magnitude at A. If node C is a corner node, this tangent-setting can be
done easily, since the tangents at a corner node are independent. If it is a smooth
node, then the subsequent tangent at C was already in the direction BC, so again
we’ve got what we need. And node C cannot be a symmetric node, because line
segments may not contain symmetric nodes.

Inline Exercise 22W.19: What, if anything, must be done if node C is an
endnode? Are there any special cases to handle?

Inline Exercise 22W.20: Suppose that C is an endnode, and we want to delete
it. The analysis of the preceding paragraph does not apply, since it assumes
that the node to be deleted is an internal node. Make some choices about how
endnode deletion should behave. Be sure to consider the special case where the
endnode is one end of a single-segment subpath!

To finish the design, you must consider the effects of all possible operations
on all possible sets of selected nodes. Once you’ve made a few decisions, others
will start to follow naturally, as part of the goal of consistency from operation
to operation. For instance, if you insert a node in a segment and then delete it
immediately, there should be no net effect. And while we’ve said that there are
no right answers for how to behave when an operation is under-defined, there are
certainly wrong ones. For instance, we could have chosen the missing tangent, in
our point-deletion example, to always be a unit vector in the +y-direction, but this
choice would have been universally despised by users.

Programming Exercise 22W.3: Implement a curve-drawing program like
the one described above. You’ll need to make decisions about many things, like
“when should a node’s tangents and their handles be visible?” and “How can the
user adjust a tangent whose length is zero, so that its handle and the position
handle for the node occupy the same space?” Ask a friend to use your program
and critique it.

Programming Exercise 22W.4: In inkscape path-drawing mode, when the
user clicks a sequence of points, the result is a polyline. Add a feature to your
path-editor so that when the user shift-clicks a sequence of points, your program
generates a Catmull-Rom spline through those points, which it then immediately
converts into a sequence of Hermite curve-segments.

3. In practice, Inkscape makes the opposite choice: if either adjacent segment is a line,
the replacement segment is made a line as well.
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22.13W Direct Manipulation of Splines

We’ve treated splines so far as curves defined by a sequence of control points,
whose very name suggests that they should be used to control the shape of the
curve. But for many users, a more direct interaction makes better sense. In direct
manipulation a user can click-and-drag on an arbitrary point of a spline curve,
moving that point to a new location. In this section, we show how to implement
two versions of direct manipulation for a Bézier curve.

Figure 22W.35: Direct manipula-
tion of the blue curve leads to the
red and magenta curves.

The starting point for our direct manipulation is a Bézier curve γ with control
points P1, . . . , P4, a user-click at some location A = γ(t0) on the curve, followed
by a drag-release at a new location B. The output is a new set of control points
Q1, . . . , Q4 for a new curve ζ with ζ(t0) = B. Figure 22W.35 shows the idea. The
user clicks and drags (see red arrow) near the right end of the blue Bézier curve,
governed by the blue control points; the points are moved somewhat to generate
the red control set and curve. The magenta arrow shows the result of a different
manipulation that starts near the center of the blue curve.

As described, the task is grossly under-specified. There are many possible
solutions. For instance, we can add the vector B − A to each Pi to generate the
corresponding point Qi. This would translate the entire curve by B−A, solving the
problem. We could, in a more extreme approach, simply set Q1 = . . . = Q4 = B,
so that the entire second Bézier curve consisted of the point B. Neither of these
seems like a good solution, however — the control points are moved a lot to
achieve a relatively small change.

To further constrain the problem, we’ll seek the control set Q1, . . . , Q4 with
the property that the vectors vi = Qi − Pi are as small as possible, in the least-
squares sense, i.e., that the sum of the squared control-point displacements is as
small as possible. That is the approach that was used to produce Figure 22W.35.

Before we work on the details of the manipulation process itself, we assumed
that the user clicked on a point A = γ(t0); in practice, a user will seldom do so.
Instead, the user clicks near the curve, and we have to find a close point on the
curve. A practical solution is to pick a hundred equally-spaced (in t) points on the
curve, compute their distances from the click-point, select the nearest one, and call
its location A (and its parameter value t0). You can do somewhat better by finding
the closest two points, and then using binary subdivision on the t-interval between
them to get a more precise approximation of the closest point to the user-click.

Recall that the Bézier curve γ is defined by

γ(t) = [P1; P2; P3; P3]MBt(t) (22.119W)
= GMBt(t), (22.120W)

where G is the geometry matrix and MB is the Bézier basis matrix. We have the
parameter value t0, and the point A = γ(t0). Our problem is to replace G with
G + ∆G so that

ζ(t) = (G + ∆G)MBt(t), (22.121W)

satisfies ζ(t0) = B, and ∆G is as small as possible. To simplify notation, we’ll
use H instead of ∆G. Subtracting γ(t0) = A from ζ(t0) = B gives

HMBt(t0) = B− A. (22.122W)
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Replacing B− A with v, we want to solve

HMBt(t0) = v (22.123W)

for the unknown H. Notice that the unknown here is a 4 × 2 matrix, and not the
vector t(t0), which is known! The goal is find the unknown 2× 4 matrix that sat-
isfies these equations and has the property that the sum of the Euclidean lengths
of its four column vectors is as small as possible. This is a constrained optimiza-
tion problem: the sum we’re minimizing turns out to be

∑
ij h2

ij (where each h
is an entry of H); the constraint is that H satisfies Equation 22.123W. One can
approach the optimization problem with the technique of Lagrange multipliers,
but we’ll pursue a somewhat more geometric analysis.

First, suppose that v happens to be aligned with the x-axis. Then since the
y-coordinates of the control points affect only the y-component of γ, there’s no
reason to change any of them: doing so cannot possible move γ(t0) closer to
B. So in this case, we can see the the change in each control-point’s position
will be in the x-direction, i.e., will be a multiple of the desired displacement v.
A similar analysis applies when v is aligned with the y-axis, and indeed you can
see (by changing coordinates) that it’s true in general. In the optimal solution of
Equation 22.123W, the columns of H, which represent the displacements of the
control points, must all be multiples of v. We have thus reduced our problem from
eight unknowns (the entries of H) to just four (the multipliers for v). We can write

H = vcT (22.124W)

so that the first column of G is
[

c1v1
c1v2

]
, and similarly for the other three columns.

The vector c is now our unknown. Furthermore, the thing we’re optimizing — the
sum of the squares of all the hijs — is proportional to ‖c‖2.

Inline Exercise 22W.21: Verify the last sentence by computing the constant
of proportionality.

Since MB and t(t0) are constants, we’ll combine them into r = MBt(t0). (What
are the dimensions of r?) The constraint equation HMBt(t0) = v now becomes

vcTr = v. (22.125W)

so that c · r = 1. The shortest vector c solving Equation 22.125W is c = r
‖r‖ , so

H =
1
‖r‖vrT, (22.126W)

from which we can find the geometry matrix G + H for the new curve ζ.
An alternative approach is based on a theorem for linear algebra: for any k×n

matrix E, every vector x ∈ Rn can be written uniquely as a sum

22.14W Subdivision Curves

We now shift from curves defined by polynomials to those defined by a class of
simple geometric constructions called subdivision, in which a polygon is modified
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to have about twice as many points (and the original points are usually moved
somewhat); this process is repeated in the hopes of approximating a smooth curve.
The advantage of subdivision is that it’s very easy to implement and understand;
indeed, we saw a simple example in chapter 4. A small drawback to subdivision
curves is that it’s not obvious, at the start, how one might find an arbitrary point
on a subdivision curve without carrying out an infinity of subdivision steps. We’ll
resolve that through the careful study of one class of subdivision curves, which
will turn out to be just the same as cubic B-spline curves.

You might well ask why, if they’re really the same as B-spline curves, we
trouble to go through another derivation of them. The answer is that the methods
used to see that the two curve-types are identical are exactly the same methods
used to study the relationship between B-spline surfaces and subdivision surfaces,
but the mathematics is considerably simpler in the curve case, and yet contains all
the essential ideas of the surface case. Furthermore, that same proof also shows
that one can use subdivision curves as a way to draw approximations of B-splines,
a method that can be very practical.

22.14.1W Midpoint subdivision
We’ll consider a very simple subdivision rule (see Figure 22W.36) in which we
subdivide a polygon by inserting new vertices at the midpoint of each edge, and
then moving the original vertices to a new location that’s a convex combination of
the vertex and its two neighbors (we saw an example of this earlier in Chapter 4).
We’ll work with the case where the combination is symmetric, in the sense that
each of the neighbors contributes equally to the new location,

Pnew
i = (1− 2s)Pi + sPi−1 + sPi+1, (22.127W)

which can be rewritten in the form

Pnew
i = (1− 2s)Pi + 2s

Pi−1 + Pi+1

2
, (22.128W)

i.e., the new location of Pi is a weighted sum of the old location and the midpoint
of its two neighbors. This symmetry restriction is not actually necessary (see the
exercises), but non-symmetric subdivision rules can lead to peculiar results. We’ll
be considering a particular case, namely s = 1

8 , but other values for s lead to
interesting results as well (see the exercises).

Programming Exercise 22W.5: Write a program, based on the 2D testbed,
in which subdivision is made more generic: a polygon is subdivided by inserting
the midpoint of each edge, but the new vertex location for Pi is aPi−1+bPi+cPi+1,
where a+b+c = 1. Make a and b be user-adjustable. What happens if one or both
is negative? Greater than one? Experiment, and describe the results. One possible
interface for choosing a, b, and c is to show a triangle ABC, and let the user click
a point in or near the triangle; the barycentric coordinates of the clicked point then
provide values for a, b, and c. If the user clicks A, then a = 1 and b = c = 0, and
similarly for the other vertices.

Programming Exercise 22W.6: (a) Write a program, based on the 2D
testbed, to test subdivision with s = 1/8. Let the user click the points of a polygon,
and when it’s complete, show 4 levels of subdivision. Also let the user move the
original vertices after subdivision has been done, and show how the subdivided
curves move. (b) How large a region of influence does one original vertex have?
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Figure 22W.36: The midpoint subdivision rule: the original polygon, marked with circles,
has new points inserted at the middle of each edge (diamonds) and each original point P
is moved to a convex combination of P and its two neighbors, i.e., Pnew

i = (1 − 2s)Pi +
sPi−1 + sPi+1.

If you start with ten vertices, and move one of them, does it affect the entire limit
curve (or, in this approximation, all points of the 4th-level subdivision curve)? Or
is its influence limited to some smaller part of the curve? How much?

Figure 22W.37 shows an initial polygon that’s had midpoint subdivision with
s = 1/8 applied to it repeatedly. We’ll refer to the s = 1/8 version of midpoint
subdivision as “subdivision” from now on, with it being understood that we’re just
considering this special case; note that in this case, the new location of Pi is just
3
4 Pi + 1

8 Pi−1 + 1
8 Pi+1. As you can see, more and more finely subdivided polygons

appear to approach a smooth curve in the limit.
We can also subdivide a polyline P1, P2, . . . , Pn in the same way, except that

the endpoints P1 and Pn have no left or right neighbors, respectively, so we cannot
define edge points there. Our solution will be to ignore these points, so the sub-
divided curve has (n − 1) edge points (between every pair of initial vertices) and
(n− 2) newly-located vertices, for a total of 2n− 3 points. (One can also include
the original endpoints, without moving them; see the exercises.) So for large n,
subdivision approximately doubles the number of vertices in the polyline.

For many readers, this is all you’ll ever need to know about subdivision: there’s
a rule for inserting new points and moving old ones a little, and if you do it often
enough, you get something that looks smooth, and indeed, looks an awful lot like
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Figure 22W.37: An initial polygon, subdivided several times by the midpoint rule with s =
1/8 This repeated subdivision leads to a smooth curve.

a spline curve. Of course, if you’ve experimented with different ways of combin-
ing neighboring points to move the old points, you’ve discovered that for some
combination rules, the limiting curve is not at all nice; indeed, the limit may not
even exist. It’s therefore prudent to understand under what conditions subdivision
actually converges, especially because we’ll be generalizing the idea of subdivi-
sion to surfaces in Chapter 23W. We’ll therefore continue on here with an analysis
of subdivision curves, their limits, and their relationship to splines.

22.15W A central example

Suppose we consider a sequence of control points Pi = (i, 0) for i 6= 0, and
P0 = (0, 1), as shown in Figure 22W.38, connected by a polyline. Repeated sub-
division of this polygon appears to converge to a smooth curve whose y-values
are nonzero for −2 < x < 2; this curve appears to be identical to the graph of
the cubic B-spline basis function b3(t). (We’re using here the symmetric B-spline
basis functions that appeared in Chapter 18, i.e., the one whose support is [−2, 2]
rather than [0, 2], because it makes the index-handling a great deal simpler). If this
apparent similarity can be proved, then it’s fairly easy (see Exercise 22W.9) to
show that subdivision curves are in fact exactly B-splines.
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(−2, 0) (−1, 0)

(0, 1)

(1, 0) (2, 0)

Figure 22W.38: A sequence of control points on the x-axis, except for a central one on
the y-axis. Under repeated subdivision (the first two levels shown in faint grey lines), this
converges to a smooth curve that’s nonzero exactly on −2 < x < 2, and which appears
identical to the degree three B-spline b3, which is plotted, slightly offset in y in red.

We won’t actually prove this claim directly, but we will instead analyze the
limit for a single point of the original polyline, namely P0. We’ll show that under
repeated subdivision, P0 moves towards (0, 3/4), and more generally, for any
sequence of control points, P0 moves towards 1/8P−1 + 3

4 P0 + 1
8 P1, which hap-

pens to be b3(−2)P−2 + b3(−1)P−1 + b3(0)P0 + b3(1)P1 + b3(2)P2, i.e., exactly
the point at t = 0 on the cubic B-spline defined by the vertices of the original
polyline.

Surprisingly, this single computation, together with a small amount of conti-
nuity analysis, will suffice to prove that subdivision curves are B-splines.

22.16W Analysis of subdivision curves

We begin with some notation. We start with a control sequence {Pi}; we’ll apply
subdivision to get a new control sequence, and repeat this process. So keep track,
we’ll use a superscript; the initial sequence will be given a superscript of 0, so

P0
i = Pi. (22.129W)

We’ll associate to this the parametric polyline through these points, i.e.,

γ0(t) =
∑

i

b1(t − i)P0
i , (22.130W)

as shown in Figure 22W.39.
The sequence arising from subdividing once will be called {P1

i }, but the sub-
scripts in this case are allowed to be half-integers; for the next level, quarter-
integer subscripts are allowed, and so on. This has the advantage that the point
arising from combining P0

3 with its neighbors is called P1
3; the point arising from

combining P1
3 with its neighbors is called P2

3, and it therefore makes sense to speak
of

lim
n→∞

Pn
3, (22.131W)

for example. For the next few paragraphs, we’ll be studying the limit of Pn
0.

We’ll also want to speak about the piecewise-linear parametric curve γ1(t)
that passes through the points {P1

i }, and has the property that for each integer or
half-integer i, γ1(i) = P1

i . It’s an easy exercise to see that γ1 can be defined by

γ1(t) =
∑

i

b1(2(t − i))P1
i , (22.132W)
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P 0

0

P 0

1

P 0

2

P 1

1/2

P 1

1

P 1

3/2

Figure 22W.39: Vertices in the initial control point sequence are labelled P0
i ; the degree-one

B-spline (i.e., polyline) passing through them is γ1. For each i, γ1(i) = P0
i . The first level

of subdivision (shown in red), has points labelled P1
i , but the subscripts are allowed to be

integers or half-integers. In the second level subdivision, indices can be quarter-integers,
and so on.

and that for further subdivision, we can define an analogous curve by

γn(t) =
∑

i

b1(2n(t − i))Pn
i . (22.133W)

With these parametric curves defined, we can state our goal more formally:
we seek to show that for every t,

lim
n→∞

γn(t) = γ(t), (22.134W)

where

γ(t) =
∑

i

Pib3(t − i). (22.135W)

As we said above, we’ll begin by showing this for t = 0. To do so, we’ll study
P0

0 and its left and right neighbors, P0
−1 and P0

1. We’ll write the coordinates of
these points as column vectors, and assemble them into a matrix,

N0 =
[
P0
−1; P0

0; P0
1

]
, (22.136W)

where we’ve chosen the letter N to stand for “neighborhood”. After one level of
subdivision, P0

0 changes to P1
0, and it gets two new neighbors: P1

− 1
2

and P1
1
2
. We
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can similarly assemble these into a matrix

N1 =
[
P1
− 1

2
; P1

0; P1
1
2

]
. (22.137W)

We can do the same for subsequent levels of subdivision. Now let’s examine how
these matrices are related. The rules for subdivision say that we insert new points
at edge-midpoints, and move existing points to a (1/8, 3/4, 1/8) weighted com-
bination of their neighborhood. That is to say

N1 = N0




1
2

1
8 0

1
2

3
4

1
2

0 1
8

1
2


 . (22.138W)

Inline Exercise 22W.22: Explain why the first column of N1 is, as determined
by this formula, is actually the midpoint of the edge from P0

−1 and P0
0. Verify

that the other two columns make sense as well.

Let S denote this matrix, so that N1 = N0S. Then because the subdivision rule
at every stage is exactly the same, we can also write

N2 = N1S (22.139W)

= N0S2, (22.140W)

and more generally, that Nk = N0Sk. To determine what happens when k gets
large (i.e., where P0 goes), we’ll need to compute large powers of S. Expressing
large powers of matrices is almost always done via eigenvalues and eigenvectors;
that’s the approach we’ll use here. We can write S as a product

S = RDL (22.141W)

=


1

6




1 −1 1
4 0 −2
1 1 1




 ·




1 0 0
0 1

2 0
0 0 1

4


 ·




1 1 1
−3 0 3
2 −1 2


 , (22.142W)

where the rows of the matrix L are left eigenvectors of S, the columns of R are
right eigenvectors, and the diagonal matrix D contains the eigenvalues.

Inline Exercise 22W.23: (a)Verify that this decomposition is correct by mul-
tiplying matrices. (b) Also verify that LR = RL = I, and that L really does
consist of left-eigenvectors, by showing that LS = DL.

This decomposition lets us compute powers of S easily. For instance,

S2 = (RDL)(RDL) (22.143W)
= (RD)(LR)(DL) (22.144W)
= (RD)(I)(DL) (22.145W)

= (RD2L). (22.146W)
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Higher powers of S are similar: Sk = RDkL for any integer k. We can use this to
compute limk→∞ Sk:

lim
k→∞

Sk = lim
k→∞

RDkL = R
(

lim
k→∞

Dk
)

L (22.147W)

= R




1k

1
2

k

1
4

k


L (22.148W)

= R




1
0

0


L = 1/6




1 1 1
4 4 4
1 1 1


 (22.149W)

For convenience, we’ll call this S∞.
With this in mind, we can see what happens to the neighborhood of P0 under

repeated subdivision. We know that

Nk = SkN0; (22.150W)

as k→∞, the right hand side approaches S∞N0, which is



Q
Q
Q


 , (22.151W)

where Q = 1
6 P−1 + 4

6 P0 + 1
6 P1. In words, the center point P0 approaches Q, as do

its two closest neighbors at each level of subdivision. This limit point is exactly
γ(0), where γ is the degree-three B-spline for the control points {Pi}.

Inline Exercise 22W.24: Verify this claim.

So we’ve shown that P0, under repeated subdivision, approaches γ(0). An
essentially identical proof shows that Pi (i = . . . ,−2,−1, 0, 1, 2, . . .) approaches

γ(i). A nice alternative proof is to let Qi = Pi+1. Then the result we’ve just
proved shows that Q0 converges to the right point on its B-spline, but Q0 is just
P1, so a little index-shifting shows that P1 converges to the proper point, and so
on.

We’ll now show that P1
1
2

converges to γ( 1
2 ); essentially the same proof will

prove the same thing for any half-integer index. Furthermore, it will show that the
same result is true for quarter-integer or eighth-integer indexes, etc. In short, we’ll
have shown that every 2-rational point t in the subdivision polygon converges to
γ(t).

Consider one level of subdivision applied to the control polygon {P0
i }, creating

the polygon {P1
i }, as shown in Figure 22W.40.

Among the five red points in the figure, the central one is P 1
2
. The argument

of the preceding paragraphs shows that this point, under repeated subdivision,
approaches a limit that is ζ(0), where ζ is the degree-3 B-spline based on the five
red control points. But the analysis of Section 22.9.5W says that ζ(0) is exactly
γ( 1

2 ).
An analogous argument holds for every point of the first subdivision polygon,

or of the second, or the third, and we can conclude that every dyadic point in the
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P 0
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P 1
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Figure 22W.40: One level of subdivision, near P0
0. The five points marked in red are exactly

those discovered when we refined the control mesh in Section 22.9.5W.

original control polygon actually converges to the corresponding limit point on
the B-spline defined by the control polygon.

What about all the points that aren’t dyadic? They, too, converge to a point on

the B-spline. One way to prove this is to show that the the convergence of
the γn to γ is uniform [21] on any closed interval (the proof is beyond the scope of
this book). It then follows that the subdivision limit curve ζ is continuous. And if
two continuous curves (the limit curve and the B-spline γ) agree on the dyadics,
then they must agree everywhere. Hence the limit curve must be exactly the B-
spline γ.

The eigenstructure of the subdivision matrix can be further analyzed to deter-
mine properties of the derivatives of the limit curve, although we know those
already, since it’s a B-spline. But for other subdivision schemes, where the exact
nature of the limit curve may not be known, this kind of analysis is necessary.

22.17W Mathematical Topics

We now discuss a few more details of some mathematical properties of
splines and subdivision.

22.17.1W Variation diminishing curves
Both Bézier and B-spline curves have the property that they are variation dimin-
ishing, i.e., every line has no more intersections with curve than with the control
polygon for the curve. This apparently abstract property has interesting practical
consequences, however: if you want to test whether a ray intersects a Bézier seg-
ment, you can test instead whether it intersects the control polygon; if not, you’re
done. But if it does intersect the control polygon, you can apply the de Castel-
jau algorithm to separate the polygon into two pieces, and test for an intersection
with each part. Applying this approach recursively not only establishes whether an
intersection exists, but narrows down the possible location of the intersection. This
idea, generalized to surfaces, can be useful in raytracing spline-based surfaces.

In the course of simulations, one often needs to know whether two objects are
interpenetrating (i.e., have collided during the previous step in the simulation). If
the objects are in 2D and defined by spline curves, this means that one needs to
test for intersections between spline curves. Fortunately, in the case of B-splines,
that’s relatively easy: one can compare the defining polygons, and if these do not
intersect, then the splines do not intersect. On the other hand, if the polygons do
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intersect, one can split the B-spline with a method that’s closely related to the de
Casteljau algorithm, the Oslo algorithm [4], inserting a knew knot and altering
the control hull to more closely approximate the spline. Doing so repeatedly again
helps determine the absence of intersections or localize intersections that exist.

22.17.2W Data fitting
Three kinds of data fitting arise often in graphics:

• User-input data, like a sketched curve, sometimes needs to be smoothed
and represented in a way that’s easy to edit later. Most drawing programs
have some form of free-form input, for instance.

• Scanned data, such as the geometry of some physical item, or the BRDF of
some material, may be so large that it’s impractical to work with it directly.
It’s often wise to choose some model,and fit the model to the data (“We’ll
represent the BRDF as a sum of a few specular peaks and a sum of low-
degree spherical harmonics4.”)

• Computed data, such as the irradiance at each point of a surface, may be so
expensive to compute that we can only afford a few samples. To estimate
the values at nearby points, we may want to fit some relatively smoothly-
varying function to the known data.

The first of these problems was addressed, in part, by Banks and Cohen [2],
who performed real-time online fitting of data with B-splines. “Online” here
means “the B-splines were updated as each new datum arrived, rather than being
computed once the entire stroke was available.” The fitting included detecting dis-
continuities such as sharp corners in the sketched curve. Their fitting criterion was
one of “how close is the B-spline to the input data?” together with a notion of a
“fair curve.” A more modern approach might actually model the user’s stroke as
being a noisy sample of an underlying B-spline curve, with the noise at succes-
sive samples being correlated at some scale; when you try to draw a circle and
fail slightly, the result is usually lumpy rather than jagged. With this model, one
could then ask “among all underlying curves, for which one is this set of data
most likely?” To formulate such a problem properly requires a model of the a pri-
ori probability of any particular model. Reasonable choices for this might include
preferring few knots over many, small curvature over large, etc. With this model in
hand, one could apply techniques like expectation maximization to fit a B-spline
to the data.

For the second problem, in which the noise in the data is uncorrelated and
more uniformly distributed, so that the data is generally referred to as a “point
cloud,” Wang and Pottman [25] describe a computationally efficient approach to
fitting by minimizing an approximation of the sum of the squared distances from
each point to the curve.

For the third problem, it’s essential to have some reasonable hypothesis about
the interpolated version of the function. The simplest “agnostic” fitting is “nearest
neighbor interpolation,” in which the value at a point P is determined by finding
the nearest point Q at which the value is known, and then using the value there

4. Spherical harmonics are the analog, for the sphere, of the Fourier basis functions
cos(nx) and sin(nx) are to the circle.
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as the value for P. As the number of known points increases, this approach does
about as well as possible, but when the number of known points is small, it is
not terribly satisfactory at an intuitive level. Other versions – k-nearest-neighbor
interpolation, where values from multiple nearby neighbors are combined – do
somewhat better, and spline-interpolation of the data may be a reasonable choice
if one believe that the underlying surface is smooth. But there is no single, simple
answer; the entire subject of density estimation in statistics attempts to address
this problem; not surprisingly, this is also closely related to problems in machine
learning.

22.17.3W Adjusting subdivision curves
Imagine that in the course of subdividing a polygon, you accidentally made an
error with one vertex at some level of subdivision, but continued onwards. The
resulting limit curve would still be smooth, but it would be “wrong” in a small
area — the region over which that vertex had an influence. Now invert that idea:
suppose you started with a polygon and subdivided it to get a limit curve, but
wanted to alter the shape of the limit curve by dragging some point (or part) of the
limit curve to a new location. How would you alter the original polygon (or some
intermediate-level vertex) to effect this change? This is the direct manipulation
problem, and as stated, it’s ill-posed. One solution for moving a point is to move
the entire original polygon by the required amount; the target point will move by
that amount as well, of course. Another approach would be to find some vertex
of the original polygon that influenced that point’s position, and simply move that
one vertex enough to effect the desired change. There are an infinity of answers
between these two. To address such problems, it’s traditional to “regularize” them
— to add in some preference for certain answers over others, so that we don’t end
up with lots of equally-good answers. A simple regularization for this problem
would be that “the sum of the squared lengths of the displacements of the original
vertices should be as small as possible.” If intermediate vertices can be moved as
well as original ones, then a further regularization might prefer early-stage vertex
motions over late-stage vertex motions, for instance. (This is completelty analo-
gous to the direct manipulation of spline curves in our drawing program example.)

For subdivision curves, a sophisticated approach to the direct manipulation
problem has been developed by Zhou et al. [26].

22.17.4W Calculus of variations: an introduction
We asked, early in this chapter, “Among all parametric curves with domain [0, 1]
starting at P with tangent v and ending at Q with tangent w, which one minimizes

∫ 1

0
‖γ′′(t)‖2dt?′′ (22.152W)

In this section, we’ll briefly show how to convert such a problem (minimizing
an integral over a family of functions) into a different problem (solving a differ-
ential equation with certain boundary conditions) which is often simpler. In doing
so, we’ll ignore a great many technical details; those interested in learning more
should consult a book on the calculus of variations [10].

Rather than solving the problem above, we’ll start with a much easier problem,
because it illustrates almost all the important features while involving much less
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work. The disadvantage is that it’s completely contrived; it’s not a problem anyone
has ever wanted to solve.

Consider the family of curves

γs(t) = (t, s(t2 − t) + 1), (22.153W)

where s can be any real number, and t ranges from 0 to 1. The curve γ0 is a straight
line from (0, 1) to (1, 1). The curve γs also joins those same two points, no matter
what s is, but when s is nonzero, the curve is no longer a straight line.

We can compute the “energy” of γs, defined by

E(s) =

∫ 1

0
‖γ′s(t)‖2dt (22.154W)

for each value of s. (The name “energy” is conventional, but it has nothing to do
with ordinary energy in a physical sense; it just gives us a name to use for the next
few paragraphs.) In fact, the energy for this particular problem is so simple that we
can compute it explicitly. First, γ′s(t) = (1, s(2t−1)), so ‖γ′s(t)‖2 = 1+s2(2t−1)2.
Integrating explicitly gives

E(s) = 1 +
s2

3
. (22.155W)

It’s easy to see that as we vary s, the function E(s) has a minimum at s = 0. (If
we were being fancy, we’d use calculus and compute dE

ds and set it to zero and solve
for s.) Thus, among all functions in our very limited class under consideration (the
γss), there’s one that minimizes energy, at it happens to be γ0.

Suppose, though, that we could not directly integrate. We could still determine
which value of s minimized E(s). Here’s how. We write γs as a sum:

γs(t) = γ(t) + s(0, t2 − t) (22.156W)

where γ(t) = (t, 1). Letting h(t) = (0, t2 − t), we say that γs is a variation of γ
(or sometimes call h itself a variation). Writing

γs(t) = γ(t) + sh(t), (22.157W)

we can rewrite the integral for E:

E(s) =

∫ 1

0
‖γ′s(t)‖2dt

=

∫ 1

0
(γ′(t) + sh′(t)) · (γ′(t) + sh′(t))dt

=

∫ 1

0
γ′(t) · γ′(t) + 2sγ′(t) · h′(t)) + s2h′(t) · h′(t)dt

=

∫ 1

0
γ′(t) · γ′(t)dt + s

∫ 1

0
2γ′(t) · h′(t)dt + s2

∫ 1

0
h′(t) · h′(t)dt.
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Without filling in the explicit formulas for γ and h, let’s ask what would hap-
pen if we tried to minimize E(s) as a function of s. We’d compute

dE
ds

(s) =
d
ds

{∫ 1

0
γ′(t) · γ′(t)dt + s

∫ 1

0
2γ′(t) · h′(t)dt + s2

∫ 1

0
h′(t) · h′(t)dt

}

=

∫ 1

0
2γ′(t) · h′(t)dt + 2s

∫ 1

0
h′(t) · h′(t)dt

=

∫ 1

0
(2γ′(t) + 2sh′(t)) · h′(t)dt.

Without the explicit formulas for γ and h, it’s not at all clear what value of s makes
this expression zero. But let’s integrate by parts, using u = 2γ′(t) + 2sh′(t) and
dv = h′(t)dt; we then get

dE
ds

(s) = (2γ′(t) + 2sh′(t)) · h(t)|10 −
∫ 1

0
(2γ′′(t) + 2sh′′(t)) · h(t)dt.

Because h(1) = h(0) = (0, 0), the first term is zero. And because γ′′(t) = 0
everywhere, the second term is zero when s = 0.

Now look at that last computation again: the only property of h that we used
was the fact that h(1) = h(0) = (0, 0). That means that if we took any variation
of γ that left the endpoints fixed (i.e., for which h(1) = h(0) = (0, 0)), we’d
find that s = 0 was the least-energy curve among all the γs curves. So we can
conclude that γ is the least energy curve between the two endpoints. To be explicit:
suppose that µ was a curve between the points with lower energy. Then let h =
µ−γ. Considering all curves γs(t) = γ(t) + sh(t), we’d find the minimum energy
occurred at s = 1, but that contradicts the conclusion that the minimum, for any
variation, occurs at s = 0.

Drawing this final conclusion depended critically on γ′′(t) being everywhere
zero.

Now let’s go a step further. Suppose we hadn’t been given γ, either. We just
want to find the least energy curve between (0, 1) and (1, 1). To be explicit, the
problem is to find, among all curves with [0, 1] as their domain, and satisfying
γ(0) = (0, 1) and γ(1) = (1, 1), the one for which E(γ) is a minimum.

Here’s how we approach this problem: we assume that there’s some particular
minimum energy curve, and we call it γ. If we vary γ by forming

γs(t) = γ(t) + sh(t) (22.158W)

for some function h with h(0) = h(1) = (0, 0), we know that E(s) is minimized
when s = 0. That means that dE

ds (0) = 0. Working through the same integration
by parts, we can conclude that

−
∫ 1

0
(2γ′′(t) + 2sh′′(t)) · h(t)dt = 0 (22.159W)

when s = 0, i.e.,

−2
∫ 1

0
γ′′(t) · h(t)dt = 0 (22.160W)
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no matter what the variation h is! The only function f with the property that
∫

f ·

h = 0 for every h is the everywhere zero function. This is somewhat glib.
The only continuous function with this property is the zero function. Furthermore,
we don’t know that

∫
f · h = 0 for every function h; we only know this for every

function h that’s zero at both ends of the interval. But it turns out that this is enough
to imply the result.

Here are some details. For the first part — is γ continuous? — the answer
is implicit in the problem: the definition of energy relies on the derivative of γ,
so we’re assuming γ is differentiable, hence that it’s continuous. On the other
hand, our solution required integration by parts and the assumption that γ′′

exists. So we really should have phrased the original problem as “Among all
twice differentiable paths from (0, 0) to (1, 1), which has the least energy?”
We’ll now proceed with the analysis assuming that this is the question under
discussion.

Let’s look at the second question: if f is twice differentiable, and the inte-
gral of f · h is zero for every variation h that’s zero at each endpoint, must f be
everywhere zero?

First, consider any interval [a, b] ⊂ [0, 1] with 0 < a < b < 1. We’ll
divide the interval into quarters, so a < q < c < r < b, where c is the center
point ((a + b)/2), and q and r are the quarter-points, i.e., a + b−a

4 and b− b−a
4

respectively.

Having done so, we can find a function h that’s zero on [0, a] and [b, 1], and
1 on [q, r], and continuous and differentiable on the whole interval. To do so,
we just piece together five functions: the zero function on [0, a], a function
that rises from 0 to 1 on the interval [a, q], with derivative 0 at each end, the
constant function 1 on [q, r], a function that falls from 1 to 0 on [r, b] (again
with zero derivatives at the ends), and the constant function 0 on [b, 1]. If we
write g(x) = x2(3 − 2x), then the rising part can be written as g( x−a

q−a ), and
the falling part as 1− g( x−r

b−r ). We’ll call this five-part function a “bump on the
interval [a, b].”
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Second, observe that although the function γ′′ that we’re working with maps
[0, 1] to R2, we can work with each coordinate independently. So what we’ll
show is that if f is a twice differentiable real-valued function and

∫ 1

0
f (t)h(t) dt = 0 (22.161W)

for every differentiable function h on [0, 1] with h(0) = h(1) = 0, then f must
be zero.

Third, note that if we show that f (t) = 0 for every t that’s strictly between
0 and 1, then f (0) = f (1) = 0 as well. (The proof is an application of the
intermediate value theorem.)

Fourth, observe that if f satisfies Equation 22.161W, then so does kf for
any real number k.

Finally, suppose that f is nonzero at some point t0 strictly between 0 and 1.
Replace f with t 7→ f (t)

f (t0)
by the fourth observation, and then we have f (t0) = 1.

We’ll derive a contradiction from this assumption that f is nonzero.
Since f is continuous, we know that for any ε > 0, there’s a δ > 0 such

that for t0 − δ < t < t0 + δ, |f (t)− 1| < ε. Picking ε = 1
2 , we find that on the

interval (t0 − δ, t0 + δ), f (t) is at least 1
2 . We can choose δ to be so small that

0 < t0 − δ < t0 + δ < 1. (Just keep dividing δ by two until these inequalities
hold.) As we do so, we get a possibly smaller interval on which f is at least 1

2 .
Now apply the first observation to build a function h that’s zero outside the

interval (t0 − δ, t0 + δ), but has value 1 on the interval (t0 − δ
2 , t0 + δ

2 ). What’s
the integral of fh on the unit interval?
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∫ 1

0
f (t)h(t) dt =

∫ t0+δ

t0−δ
f (t)h(t) dt because h is zero outside this interval

(22.162W)

≥
∫ t0+δ

t0−δ

1
2

h(t) dt because f >
1
2

on this interval

(22.163W)

≥ 1
2

∫ t0+δ

t0−δ
h(t) dt (22.164W)

≥ 1
2

∫ t0+ δ
2

t0− δ
2

h(t) dt because h ≥ 0

(22.165W)

≥ 1
2

∫ t0+ δ
2

t0− δ
2

1 dt because h(t) = 1 on this interval

(22.166W)

=
δ

2
> 0. (22.167W)

Since the integral of fh is supposed to be zero for every variation h, but it’s
nonzero for this one, the assumption that f (t0) 6= 0 must have been invalid.

Thus we conclude that−2γ′′(t) = 0 for all t ∈ [0, 1]. That makes γ linear, and
the only linear function that goes from (0, 1) to (1, 1) is γ(t) = (0, t).

The essential features of the argument above are these: first, we need to assume
that the energy minimization problem has a solution, and that the solution is twice
differentiable, and the second derivative is continuous; second, we said that for γ
to be a minimum, every variation of γ had to increase E, so dE/ds had to be zero
at s = 0, no matter what variation h we used; third, we used integration by parts
to convert this to an integral of the form

∫ 1

0
expression involving γ · h = 0 (22.168W)

which had to be zero for every variation h, which meant that the expression involv-
ing γ had to be zero everywhere.

Suppose we now try to minimize
∫ 1

0
‖γ′′(t)‖2dt (22.169W)

which was our original problem, subject to the conditions that γ(0) = P, γ(1) =
Q, γ′(0) = v and γ′(1) = w. In this case, the only allowable variations are ones
for which h(0) = h(1) = (0, 0) and h′(0) = h′(1) = (0, 0), because if the
derivatives at the ends were not zero, then γs(t) = γ(t) + sh(t) would not have
γ′s(0) = v and γ′s(1) = w as required.

Once again we assume that a minimizing curve γ exists, and that it’s differen-
tiable, with continuous derivatives (in this case, it’ll turn out to need a continuous
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fourth derivative). Writing out the minimization problem, taking a derivative, and
setting to zero yields

0 =
d
ds

{∫ 1

0
γ′′(t) · γ′′(t)dt + s

∫ 1

0
2γ′′(t) · h′′(t)dt + s2

∫ 1

0
h′′(t) · h′′(t)dt

}
at s = 0

=

∫ 1

0
2γ′′(t) · h′′(t)dt + 2s

∫ 1

0
h′′(t) · h′′(t)dt at s = 0

=

∫ 1

0
(2γ′′(t) + 2sh′′(t)) · h′′(t)dt at s = 0

=

∫ 1

0
2γ′′(t) · h′′(t)dt.

Integrating by parts twice (we won’t show the details) gives

0 =

∫ 1

0
γ′′′′(t) · h(t)dt. (22.170W)

The “uv” terms for each integration by parts turn out to be zero because of the
assumptions about h. The final equation tells us that γ′′′′(t) = 0 for all t, i.e., that
γ must be a cubic.

For any integral expression like the ones we’ve just examined, there’s an asso-
ciated differential equation; for the first, the equation was −2γ′′(t) = 0; for the
second, it was γ′′′′(t) = 0. In general, this is called the Euler-Lagrange equation
for the variational problem, and after a little practice, it becomes easy to see a
general pattern and write down the Euler-Lagrange equation simply by looking at
the integrand.

An essentially identical approach is used to solve similar problems in two
dimensions. A classic is the thin plate spline problem, in which one seeks a func-
tion of two variables f (x, y) that takes on particular values zi at certain points
(xi, yi) (i = 1, . . . n) , and minimizes the integral of f 2

xx(x, y) + 2f 2
xy(x, y) + f 2

yy(x, y).
This corresponds to the shape taken by a thin sheet of metal when it’s deformed by
applying point forces at certain points of the surface. The solution to this problem
has the form

f (x, y) = A + Bx + Cy +

n−3∑

i=1

ciφ(‖(x− xi, y− yi)‖) (22.171W)

where φ is the function φ(r) = r2 log r. The actual values of A, B, C and the ci are
determined by setting f (xi, yi) = zi, which gives n equations in the n−3 unknown
ci together with A, B, and C.

Such “thin plate splines” have been applied in many situations in graphics,
from morphing [16] to the interpolation of things like scattered samples of radi-
ance as mentioned above. Their generalization to three dimensions also makes an
appearance in the field of implicit surfaces (see Chapter 24).

22.18W Notes and further reading

The theory of splines was developed in applied mathematics, in trying to find ways
to approximate a function f : R → R. It was known that one could use polyno-
mials to approximate any continuous function, but to get a good approximation
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could require a very high degree for the approximating polynomial. The notion of
“goodness of fit” was the so-called “sup-norm”, in which g fit f with accuracy c if
|f (x)− g(x)| < c for every x, which meant that very wiggly curves could be used
to closely approximate smooth ones, as long as the wiggles were small. Splines
provided a way to generate low-degree but accurate approximations, at the cost
of having to specify a different polynomial on each of many intervals. B-splines
were introduced by Schoenberg [19] in 1946, but they were not particularly cen-
tral until the early 1970s, when Carl de Boor had been developing a recursive,
stable method for evaluating B-splines. At that point Riesenfeld’s dissertation [?]
showed that B-splines could also be used for ab initio modeling in many contexts,
which (along with prior industrial adoption of splines for computer-aided model-
ing of existing artifacts) helped make B-splines a standard tool for shape modeling
for decades.

The descriptions in this chapter of splines in terms of polynomial-bits-that-
glue-up-nicely, energy-minimizing curves, repeated convolutions, and as polyno-
mials related to probabilities barely scratch the surface of the subject; they’re also
related to geometric constructions and to signal processing, for example.

The idea that the cubic B-spline basis curve can be written as a weighted sum
of scaled-down copies of itself is related to wavelets and to fractals [23].

Subdivision curves were introduced in 1973 by Chaikin, who described a
method for “corner cutting” of polygons to gradually smooth them out. At each
stage, he introduced new points 1

4 and 3
4 of the way along each edge, and deleted

the original vertices. The resulting polygons converged to a limit curve which can
be analyzed much as we analyzed subdivision curves. The limit curve turns out to
be a quadratic B-spline curve.

The subdivision curves we’ve described are the one-dimensional analog of the
subdivision surfaces described by Catmull and Clark, which we’ll encounter in
the next chapter. One view of such a subdivision scheme is that it provides a way
to convert a discrete signal (a sequence of values, like . . . , 0, 0, 1, 0, 0, . . .) into a
continuum signal (the degree-three B-spline basis curve, in the case of the subdivi-
sion scheme we concentrated on); because the map from sequences to continuum
signals is linear, it can be written as convolution with some kernel (in this case,
the cubic B-spline basis curve). The relation between the subdivision rule and the
convolution kernel, particularly in the case of surfaces, is a rich one [20].

The mathematics of subdivision has been extremely carefully studied; modern
papers on the subject require substantial mathematical sophistication. An article
by Dyn and Levin [7] carries out the analysis hinted at (including the uniform
convergence argument) in this chapter, which can be understood by a student who
has completed a good undergraduate course in real analysis.

Exercises

Exercise 22W.7: We can derive the Hermite polynomials a second way. Writing
the coefficients of the four Hermite polynomials p1, . . . , p4 as the rows of a matrix
M, we have




p1(t)
p2(t)
p3(t)
p4(t)


 = MT(t) (22.172W)
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The condition that p1(0) = 1, while p2(0) = p3(0) = p4(0) = 0 tells us that



1
0
0
0


 =




p1(0)
p2(0)
p3(0)
p4(0)


 = MT(0) =




1
0
0
0


 . (22.173W)

By writing down the contraints on the values of the pis at t = 1, and on their
derivatives at t = 0, 1, we get three more such equations. The left hand side in
each on is ei for i = 1, 2, 3, 4. These can be assembled, columnwise, into a matrix
equation; the assembly of the four ei vectors produces the identity, so we get

I = M[T(0); T(1); T′(0); T′(1)]. (22.174W)

Fill in the four columns of this last matrix, and then invert the matrix to find M,
and from this write down the four Hermite polynomials.

Exercise 22W.8: (a) Show that the vectors T(t1), T(t2), T(t3), T(t4) are lin-
early independent for any four distinct values of the ti. (It may be easier to do
this with two T-vectors that only contain the constant and linear terms, and then
with three T-vectors that contain the constant, linear, and quadratic terms, and
then induce a pattern. If not, you may find you want to read about Vandermonde
matrices.)
(b) Conclude that if two Bézier curves agree at any four distinct values of t, then
they are identical (as parametric curves).

Exercise 22W.9: We claimed that knowing that the piecewise-linear inter-
polants for the repeated subdivisions of the sequence of values . . . , 0, 0, 1, 0, 0, . . .
converged to a curve that was the cubic B-spline basis function b3 was sufficient
to show that subdivision of any polyline always led to cubic B-splines using as
control points the initial polyline’s vertices. We’ll show that here in five steps. To
simplify matters, let’s pick an origin Z (for “zero”) and write each original control
point Pi = Z + pi, so that the pi are vectors in R2. (The proof we’ll write down
will clearly generalize to Rn.) The broad idea of the proof is first, that the rule for
subdivision applies to the x-coordinates and the y-coordinates in identical ways, so
we might as well study them one at a time, i.e., look at subdivision on sequences
of numbers, and second, that sequences of numbers can be written as sums of
multiples of translates of the sequence . . . , 0, 0, 1, 0, 0, . . .. Because subdivision is
linear, we can bring the subdivision operation inside the sum and scalar multiples.
Because our subdivision rule is shift-equivariant (which we define below), we can
also pull it inside the translation.
(a) Explain why if {pi}i∈Z and {qi}i∈Z are polylines that lead, through subdivision,
to limit curves γp and γq respectively, then {pi + qi}i∈Z leads to a limit curve γp+q

with the property that γp+q = γp + γq. Also explain why, if each pi is (0, 0), the
limit curve γp satisfies γp(t) = (0, 0) for all t. Finally, argue that if {xi} and {yi}
are sequences of numbers, then applying the subdivision rule to each sequence to
get limit-functions fx and fy means that applying subdivision to the point-sequence
{(xi, yi)} will give a limit curve (fx, fy).
(b) Writing a polyline {si}i∈Z as {(xi, yi)}i∈Z, and {pi = (xi, 0)}i∈Z and {qi =
(0, yi)}i∈Z, apply the results of part a to show that if the limit curve of subdivision
on the three curves are γs, γp, and γq, then γs = γp + γq, and that (for instance),
γp = (f , 0), where f is the limit-function for subdivision of the value-sequence
{xi}.
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These first two parts show that the action of subdivision on a sequence of points
depends only on its action on sequences of numbers.
(c) Show that subdivision on number-sequences is shift-equivariant, meaning that
if the sequence {i 7→ xi} leads to a limit function t 7→ f (t), explain why the
sequence the sequence {i 7→ xi+1} leads to the limit function t 7→ f (t − 1). If
x = {i 7→ xi} is a sequence, denote by T(x) (the “translate” of the sequence) the
sequence {i 7→ xi+1}.
(d) Let u be the sequence with all values 0 except for u0 = 1. Show that the
sequence x{i 7→ xi} can be written as a sum of multiples of shifts of u, namely

x =

∞∑

i=−∞
xiT i(u)

(e) Conclude that since subdivision applied to u results in b3, subdivision applied
to x results in the limit function

x =

∞∑

i=−∞
xib3(t − i)

and then that subdivision of the sequence {pi}i∈Z leads to the limit curve γp(t) =∑∞
i=−∞ pib3(t − i).
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